

Avifauna Assessment for the proposed Prospecting Mining Right Application for Klipvley 153

Western Cape Province, South Africa

June 2023

CLIENTS

Prepared by:

The Biodiversity Company Cell: +27 81 319 1225 Fax : +27 86 527 1965 info@thebiodiversitycompany.com www.thebiodiversitycompany.com

Report Name	Avifauna Impact Assessment for the proposed prospecting right application	
Submitted to		
	Ernest porter	
Fieldwork	Ernest has gained birding experience in the Northern Cape, North West, Mpumalanga, Limpopo, KwaZulu Natal, Free State, Western Cape and also Gauteng. He is a qualified FGASA NQF2 Field Guide and a committee member of Black Eagle Project Roodekrans and The Botanical Society of South Africa (Bankenveld Branch).	
	Ryno Kemp Repry	
Report Writing	Ryno Kemp is Pr Sci Nat registered (117462/17) in Zoological Science and is finalising his PhD in Zoology from the University of Pretoria. Ryno is a qualified Avifauna specialist with just over a year's experience, three years of experience in conservation and more than eight years of scientific research experience across South Africa.	
	Andrew Husted	
Report Reviewer	Andrew Husted is Pr Sci Nat registered (400213/11) in the following fields of practice: Ecological Science, Environmental Science and Aquatic Science. Andrew is an Aquatic, Wetland and Biodiversity Specialist with more than 12 years' experience in the environmental consulting field.	
Declaration	The Biodiversity Company and its associates operate as independent consultants under the auspice of the South African Council for Natural Scientific Professions. We declare that we have no affiliation with or vested financial interests in the proponent, other than for work performed under the Environmental Impact Assessment Regulations, 2017. We have no conflicting interests in the undertaking of this activity and have no interests in secondary developments resulting from the authorisation of this project. We have no vested interest in the project, other than to provide a professional service within the constraints of the project (timing, time and budget) based on the principals of science.	

Table of Contents

1	Introduction	1
1.1	Project Description	2
1.2	Terms of Reference	4
1.3	Assumptions and Limitations	4
1.4	Key Legislative Requirements	4
2	Definitions	6
2.1	Project Area of Influence	6
2.2	Species of Conservation Concern	6
3	Methods	7
3.1	Desktop Assessment	7
3.1.1	Ecologically Important Landscape Features	7
3.1.2	Expected Avifauna Species	8
3.2	Field Survey	8
3.3	Data Analysis	9
3.4	Site Ecological Importance	9
3.5	Environmental Impact Assessment	. 12
4	Results & Discussion	. 14
4.1	Desktop Assessment	. 14
4.1.1	Ecologically Important Landscape Features	. 14
4.2	Expected Species of Conservation Concern	24
4.3	Field Assessment	. 26
4.3.1	Species List of the Field Survey	. 26
4.4	Fine-Scale Habitat Use	. 27
4.4.1	Namaqualand Heuweltjie Strandveld	. 27
4.4.2	Namaqualand Inland Duneveld	. 28
4.4.3	Namaqualand Seashore Vegetation	. 30
4.4.4	Modified Landscape	. 30
5	Site Ecological Importance (SEI)	. 33
5.1	Environmental Screening Tool	. 33
5.2	Site Ecological Importance (SEI)	34
6	Impact Assessment	. 38
6.1	Present Impacts to Avifauna	. 38
6.2	Anticipated Impacts	. 40
6.3	Alternatives	40
6.1	Loss of Irreplaceable Resources	40
6.2	Assessment of Impact Significance	40
6.2.1	Prospecting phase	40
7	Avifauna Impact Management Actions	44
8	Conclusion and Impact Statement	46

8.1	Conclusion	46
8.2	Impact Statement	46
9	References	47
10	Appendix Items	49
10.1	Appendix A: Expected species	49
10.2	Appendix B	54
10.3	Appendix C: Specialist Declaration of Independence	59

List of Tables

Table 1-1	Planned prospecting activities must be conducted in phases and within specific timeframes
Table 1-2	A list of key legislative requirements relevant to biodiversity and conservation in the Western Cape Province
Table 3-1	Summary of Conservation Importance (CI) criteria10
Table 3-2	Summary of Functional Integrity (FI) criteria10
Table 3-3	Matrix used to derive Biodiversity Importance (BI) from Functional Integrity (FI) and Conservation Importance (CI)
Table 3-4	Summary of Receptor Resilience (RR) criteria11
Table 3-5	Matrix used to derive Site Ecological Importance from Receptor Resilience (RR) and Biodiversity Importance (BI)
Table 3-6	Guidelines for interpreting Site Ecological Importance in the context of the proposed development activities
Table 4-1	Summary of the relevance of the proposed development to ecologically important landscape features
Table 4-2	Expected avifauna Species of Conservation Concern that are expected to occur within the PAOI. CR = Critically Endangered, EN = Endangered, LC = Least Concern, NT = Near Threatened and VU = Vulnerable
Table 4-3	Relative abundance and frequency of occurrence of dominant avifauna species recorded during the standardised point counts within and around the proposed development during the field survey
Table 5-1	SEI Summary of habitat types delineated within field assessment area of project area 34
Table 6-1	Loss of habitat within the PAOI40
Table 6-2	Displacement of avifauna community (including SCC) due to disturbance from increased human presence and noise pollution
Table 6-3	Direct mortality from vegetation clearing, increased vehicle traffic and poaching, including the collection of eggs
Table 7-1	Summary of management outcomes pertaining to impacts to avifauna and their habitats .

List of Figures

Figure 1-1	Map illustrating the location of the proposed PAOI1
Figure 1-2	Proposed Solar Energy Facility Infrastructure2
Figure 2-1	The different Species of Conservation Concern categories were modified from the IUCN's extinction risk categories. Source: SANBI (2020)
Figure 3-1	Map illustrating the field survey area and locations of Standardised Point Counts for the proposed development PAOI
Figure 4-1	Map illustrating the WCBSP associated with the PAOI15
Figure 4-2	Map illustrating the ecosystem threat status associated with the PAOI16
Figure 4-3	Map illustrating the ecosystem protection level associated with the PAOI
Figure 4-4	Map illustrating the Project Area of Influence (PAOI) in relation to Conservation and Protected Areas
Figure 4-5	Map illustrating the Project Area of Influence (PAOI) in relation to NPAES Focus Areas 19
Figure 4-6	Map illustrating the locations of Important Bird and Biodiversity Areas proximal to the Project Area of Influence (PAOI)
Figure 4-7	Map illustrating the locations of Coordinated Avifaunal Roadcount proximal to the Project Area of Influence (PAOI)
Figure 4-8	Map illustrating the locations of Coordinated Waterbird Counts proximal to the Project Area of Influence (PAOI)
Figure 4-9	Map illustrating the Project Area of Influence (PAOI) in relation to South African Inventory of Inland Aquatic Ecosystems (SAIIAE) features
Figure 4-10	Map illustrating the Project Area of Influence (PAOI) in relation to the National Freshwater Ecosystem Priority Areas
Figure 4-11	Map illustrating the SABAP2 pentads used to compile the expected species list24
Figure 4-12	Sagittarius serpentarius (Secretarybird) observed in the northern parts of the proposed prospecting site
Figure 4-13	Column plot illustrating the proportion of each Functional Feeding Guild to the total abundance. Avifaunal trophic guilds – CGD, Carnivore Ground Diurnal; CGN, Carnivore Ground Nocturnal, CAN, Carnivore Air Nocturnal, CWD, Carnivore Water Diurnal; FFD, Frugivore Foliage Diurnal; GGD, Granivore Ground Diurnal; HWD, Herbivore Water

Water Diurnal; NFD, Nectivore Foliage Diurnal; OMD, Omnivore Multiple Diurnal; IAN, Invertivore Air Nocturnal......27

Diurnal; IAD, Invertivore Air Diurnal; IGD, Insectivore Ground Diurnal; IWD, Invertivore

Figure 4-14 Photograph illustrating an example of intact strandveld observed in the PAOI28

Figure 4-15 Photograph illustrating an example of the Duneveld habitat observed in the PAOI29

Figure 4-16 Photograph illustrating an example of the seashore habitats observed in the PAOI.......30

Figure 4-17	Photograph illustrating an example of the modified habitats observed in the broader assessment area
Figure 4-18	Map illustrating the habitat types delineated within the proposed development PAOI 32
Figure 5-1	Terrestrial Biodiversity Theme Sensitivity for the PAOI, National Web based Environmental Screening Tool
Figure 5-2	Fauna Theme Sensitivity for the PAOI, National Web based Environmental Screening Tool 34
Figure 5-3	Map illustrating the Site Ecological Importance of the proposed development within an avifauna context
Figure 6-1	Photograph illustrating an example of impacts observed within the proposed development. 39

List of Acronyms and Abbreviations

%	Percent
ADU	Animal Demography Unit
BESS	Battery Energy Storage System
BI	Biodiversity Importance
CAR	Coordinated Avifaunal Roadcounts
СВА	Critical Biodiversity Area
CI	Conservation Importance
CR	Critically Endangered
CWAC	Coordinated Waterbird Counts
DC	Direct Current
EAP	Environmental Assessment Practitioner
EGI	Electricity Grid Infrastructure
El	Ecological Importance
EIA	Environmental Impact Assessment
EMPr	Environmental Management Plan report
EN	Endangered
EOO	Extent of occurrence
ESA	Ecological Support Area
EWT	Endangered Wildlife Trust
FFG	Functional Feeding Guild
FI	Functional Integrity
GIS	Geographic Information Systems
ha	hectares
IBA	Important Bird and Biodiversity Area
KBA	Key Biodiversity Area
km	kilometres
kV	kilo Volt
	Least Concern
m	metres
m ²	square metres
MTS	Main Transmission Substation
MW	Mega Watt
NBA	National Biodiversity Assessment
NEMA	National Environmental Management Act
NEEPA	National Ereshwater Ecosystem priority Areas
NPAES	National Protected Areas Expansion Strategy
NT	Near Threatened
ONA	Other Natural Areas
ΡΔΟΙ	Project Area of Influence
RR	Recentor Resilience
SARAD2	South African Bird Atlas Project 2
	South African Conservation Areas Database
SAUAE	South African Inventory of Inland Aquatic Ecosystems
SANRI	South African Interiory of Infland Aquatic Ecosystems
SAPAD	South African Protected Areas Database
	Species of Conservation Concern
SEI	Site acalagical Importance
V	Volt
	Vul
VU	vuinerable

1 Introduction

The Biodiversity Company was appointed to undertake an avifauna baseline and impact assessment for the proposed prospecting rights application for the Klipvley 153, South Africa. The proposed extent of the area for prospecting (3635 ha) is located 40 km west of the town Lutzville, within the western Cape Province. The extent of the propsecting area has been considered for the Project Area of Influence (PAOI).

The National Web-based Environmental Screening Tool (Regulation 16(1)(v) of the Environmental Impact Assessment Regulations 2014, as amended) indicated that the Animal Species Theme Sensitivity was rated as 'High' due to the possible presence of Species of Conservation Concern (see section 2.2 of this report for the definition), including avifauna species. Accordingly, The Biodiversity Company was sub-contracted to undertake an Avifauna Impact Assessment to inform on the impact of the proposed PV to the avifauna community within the receiving environment. The approach was informed by the Environmental Impact Assessment Regulations. 2014 (GNR 326, 7 April 2017) of the National Environmental Management Act, 1998 (Act No. 107 of 1998) (NEMA). The approach has taken cognisance of the recently published Government Notices 320 (20 March 2020) in terms of NEMA, dated 20 March and 30 October 2020: "*Procedures for the Assessment and Minimum Criteria for Reporting on Identified Environmental Themes in terms of Sections 24(5)(a) and (h) and 44 of the National Environmental Management Act, 1998, when applying for Environmental Authorisation" (Reporting Criteria).*

This report, after taking into consideration the findings and recommendations provided by the specialist herein, should inform and guide the Environmental Assessment Practitioner (EAP) and regulatory authorities, enabling informed decision-making, as to the ecological viability of the proposed project.

Figure 1-1 Map illustrating the location of the proposed PAOI

Figure 1-2 Proposed Solar Energy Facility Infrastructure

1.1 **Project Description**

The existence and possible size of heavy mineral deposits in the application area will be determined as follows:

- Data review and desk top studies will involve the following desk-top activities: data acquisition
 from government and private sources, and analysis of any existing/previous prospecting and
 drilling data, satellite (Landsat) imagery, aerial photos, and terrain data, as well as geological
 map interpretation. The synthesis and interpretation of such information will contribute towards
 providing a clearer picture of the location and characteristics of the heavy mineral deposit/s and
 will guide the in-field prospecting programme.
- Mapping and surface sampling: Surface mapping will be conducted by the project geologist and assistants and will take place over a period of 3 months. Such mapping will encompass GPS controlled traverses, and aerial photo mapping. Surface sampling. Where heavy mineral concentrations are noted on surface 25-liter surface samples will be collected manually with a shovel and plastic sampling bag for concentration and laboratory analysis to determine the type of minerals present and the tenor of mineralization. Each pit will be 50cm x 50cm in size and dug to a maximum depth of 1m. The final number of samples will be determined by the size of surface mineralized areas if any, 200 samples are planned for initially. Each sample locality will be backfilled and fully rehabilitated concurrently with sampling.
- Reconnaissance Drilling will involve surveying and pegging of the anticipated deposit. This subphase will include the following activities: Surveying of the mapped area to be prospected. A grid (average 500m x 500m) will be marked on the map, after which those positions will be marked in the field by a surveyor with labelled droppers (pegs). Shallow small diameter auger drilling will take place at these positions down to a depth of 4m. A total of 100 auger drill holes are planned

initially and may be followed up with additional drilling. Access routes to the drill sites will also be located (existing roads will used and new tracks only permitted in exceptional circumstances).

- Evaluation drilling will be conducted with the Air-core drilling method to access the deeper lying sediment package. Existing geological information in the area indicate mineralization down to 10m depth. A total of 250 Air-core holes are planned to an average depth of 30m. More drilling may be required depending on results. Drill cutting will be sampled and analysed for heavy mineral content as described above for surface sampling.
- Analytical desk-top study. All the data collected will be analysed and compiled into a final report/model in order to determine the potential of the project and to outline possible future drill sampling programs if any.

The prospecting will be conducted in 3 phases, each one dependent on the results of the previous.

- Phase 1 will involve the following desk-top activities: data acquisition from government and private sources, and analysis of any existing/previous prospecting and drilling data, satellite (Landsat) imagery, aerial photos, and terrain data, as well as geological map interpretation. The synthesis and interpretation of such information will contribute towards providing a clearer picture of the location and characteristics of the heavy mineral deposit/s, and will guide the in-field prospecting programme.
- Phase 2: Surface mapping will be conducted by the project geologist and assistants, and will take place over a period of 3 months. Such mapping will encompass GPS controlled traverses, and aerial photo mapping. Surface sampling. Where heavy mineral concentrations are noted on surface 25 liter surface samples will be collected manually with a shovel and plastic sampling bag for concentration and laboratory analysis to determine the type of minerals present and the tenor of mineralization. Each pit will be 50cm x 50cm in size and dug to a maximum depth of 1m. The final number of samples will be determined by the size of surface mineralized areas if any, 200 samples are planned for initially. Each sample locality will be backfilled and fully rehabilitated concurrently with sampling.
- Phase 3 will involve surveying and pegging of the anticipated deposit. This sub-phase will include the following activities: Surveying of the mapped area to be prospected. A grid (average 500m x 500m) will be marked on the map, after which those positions will be marked in the field by a surveyor with labelled droppers (pegs). Shallow small diameter auger drilling will take place at these positions to an average depth of 4m. A total of 100 auger drill holes are planned initially and may be followed up with additional drilling Access routes to the drill sites will also be located (existing roads will used and new tracks only permitted in exceptional circumstances)
- Phase 4 will be conducted with Air Core drilling method to access the deeper lying sediment package. A total of 250 Air-core holes are planned down to an average depth of 30m. More drilling may be required depending on results. Drill cutting will be sampled and analyzed for heavy mineral content as described above for surface sampling.
- Phase 5 will involve analytical desk-top study. All the data collected will be analyzed and compiled into a final report/model in order to determine the potential of the project and to outline possible future drill sampling programs if any.

Table 1-1Planned prospecting activities must be conducted in phases and within specific
timeframes

Phase	Operation	Time Frame	Quantities
Phase 1	Data review and desk top studies	6 months	Entire area
Phase 2	Mapping and surface sampling	12 months	Phase 1b: 200 samples
Phase 3	Reconnaissance drilling	18 months	Phase 2a: 100 holes
Phase 4	Evaluation Air-core drilling	12 months	Phase 2b: 250 holes
Phase 5	Analytical desktop study	12 months	All Data

1.2 Terms of Reference

The assessment was achieved under the Procedures for the Assessment and Minimum Criteria for Reporting on identified Environmental Themes in terms of Section 24(5) (a) and (h) and 44 of NEMA ("the Protocols") promulgated in GN No. 320 of 20 March 2020. Where no specific environmental theme protocol has been prescribed, the level of assessment must be based on the findings of the site verification and must comply with Appendix 6 of the EIA Regulations of 2014 (as amended).

The scope of the Avifaunal Impact Assessment included the following:

- Desktop assessment to identify the relevant ecologically important geographical features within the PAOI and surrounding landscape
- Desktop assessment to compile an expected species list and possible avifauna Species of Conservation Concern (SCC) that potentially occur within the PAOI;
- Description of the baseline avifauna species and Functional Feeding Guild (FFG) composition assemblage within the PAOI;
- Delineate site sensitivity or sensitivities i.e., the Site Ecological Importance (SEI) within the context of the avifauna species assemblage of the PAOI;
- Identify the manner that the proposed development impacts the avifauna community and evaluate the level of risk of these potential impacts; and
- Provide mitigation measures to prevent or reduce the possible impacts.

1.3 Assumptions and Limitations

The following assumptions and limitations should be noted for the assessment:

- The PAOI was based on the project footprint area as provided by the client. See section 2.1 of this report for additional details. Any alterations to the area and/or missing Geographic Information Systems (GIS) information pertaining to the assessment area would have affected the area surveyed and hence the results of this assessment;
- Only one site visit was conducted. The field investigation was conducted in over 6 days from the 13th to the 18th of May, 2023.
- Whilst every effort was made to cover as much of the PAOI as possible, it is possible that some species that are present within the PAOI were not recorded during the field investigations due to their secretive behaviour and sampling time; and
- The GPS used in the assessment has an accuracy of 5 m, and consequently, any spatial features delineated may be offset by up to 5 m.

1.4 Key Legislative Requirements

The legislation, policies and guidelines listed below in Table 1-2 are applicable to the proposed project. The list below, although extensive, may not be complete and other legislation, policies and guidelines may apply in addition to those listed below.

Table 1-2A list of key legislative requirements relevant to biodiversity and conservation in
the Western Cape Province

Region	Legislation / Guideline
International	Convention on Biological Diversity (CBD, 1993)
	The Convention on Wetlands (RAMSAR Convention, 1971)
-	www.thebiodiversity.compeny.com

Region	Legislation / Guideline
5	The United Nations Framework Convention on Climate Change (UNFCC, 1994)
	The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES 1973)
	The Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention, 1979)
	Constitution of the Republic of South Africa (Act No. 108 of 1996)
	The National Environmental Management Act (NEMA) (Act No. 107 of 1998)
	The National Environmental Management: Protected Areas Act (Act No. 57 of 2003)
	The National Environmental Management: Biodiversity Act (Act No. 10 of 2004), Threatened or Protected Species Regulations
	Procedures for the Assessment and Minimum Criteria for Reporting on Identified Environmental Themes in terms of Sections 24(5)(a) and (h) and 44 of the National Environmental Management Act, 1998, GNR 320 of Government Gazette 43310 (March 2020)
	Procedures for the Assessment and Minimum Criteria for Reporting on Identified Environmental Themes in terms of Sections 24(5)(a) and (h) and 44 of the National Environmental Management Act, 1998, GNR 1150 of Government Gazette 43855 (October 2020)
	The National Environmental Management: Waste Act, 2008 (Act 59 of 2008);
	The Environment Conservation Act (Act No. 73 of 1989)
	National Protected Areas Expansion Strategy (NPAES)
Netteral	Natural Scientific Professions Act (Act No. 27 of 2003)
National	National Biodiversity Framework (NBF, 2009)
	National Forest Act (Act No. 84 of 1998)
	National Veld and Forest Fire Act (101 of 1998)
	National Water Act (NWA) (Act No. 36 of 1998)
	National Spatial Biodiversity Assessment (NSBA)
	World Heritage Convention Act (Act No. 49 of 1999)
	Municipal Systems Act (Act No. 32 of 2000)
	Alien and Invasive Species Regulations and, Alien and Invasive Species List 20142020, published under NEMBA
	South Africa's National Biodiversity Strategy and Action Plan (NBSAP)
	Conservation of Agricultural Resources Act, 1983 (Act 43 of 1983) (CARA)
	Sustainable Utilisation of Agricultural Resources (Draft Legislation).
	White Paper on Biodiversity
Provincial	Western Cape Land Use Planning Act (2015)
i rovincial	Western Cape Biodiversity Sector Plan (WCBSP) (DEADP, 2017)

2 Definitions

2.1 Project Area of Influence

The Project Area of Influence (PAOI) encompasses the geographical extent of the potential impacts of the proposed development on the receiving environment. Essentially, the PAOI is defined according to the important ecosystem processes and functions that may be plausibly affected by the proposed development and its associated activities. In consideration that the project is not located within the Strategic Transmission Corridor, the PAOI was delineated as the project border.

2.2 Species of Conservation Concern

According to the National Red List of South African Plants website, managed and maintained by the South African National Biodiversity Institute (SANBI), a Species of Conservation Concern (SCC) is a species with high conservation importance in terms of preserving South Africa's rich biodiversity. This classification covers a range of conservation status categories, as illustrated in Figure 2-1.

Figure 2-1 The different Species of Conservation Concern categories were modified from the IUCN's extinction risk categories. Source: SANBI (2020)

South Africa uses the internationally endorsed International Union for Conservation of Nature (IUCN) Red List Categories and Criteria (IUCN, 2021). This scientific system is designed to measure species' risk of extinction, and its purpose is to highlight those species that are in need of critical conservation action. As this system has been adopted from the IUCN, the definition of an SCC as described and categorised above is extended to all red list classifications relevant to fauna and the IUCN categories for this report.

3 Methods

3.1 Desktop Assessment

The desktop assessment was undertaken using GIS to access spatial datasets to develop digital cartographs and species lists. These datasets and their date of publishing are provided below.

3.1.1 Ecologically Important Landscape Features

Existing ecologically relevant data layers were incorporated into GIS to establish how the proposed development might interact with any ecologically important entities. Emphasis was placed around the following spatial datasets:

- Protected areas:
 - South Africa Protected Areas Database (SAPAD) (DFFE, 2022) The South African Protected Areas Database (SAPAD) contains spatial data for the conservation of South Africa. It includes spatial and attribute information for both formally protected areas and areas that have less formal protection. SAPAD is updated on a continuous basis and forms the basis for the Register of Protected Areas which is a legislative requirement under the National Environmental Management: Protected Areas Act, Act 57 of 2003.
 - National Protected Areas Expansion Strategy (NPAES) (DFFE, 2021) The National Protected Area Expansion Strategy (NPAES) provides spatial information on areas that are suitable for terrestrial ecosystem protection. These focus areas are large, intact and unfragmented and are therefore, of high importance for biodiversity, climate resilience and freshwater protection.
- Important Bird and Biodiversity Areas (BirdLife South Africa, 2022) Important Bird and Biodiversity Areas (IBAs) constitute a global network of over 13 500 sites, of which 112 sites are found in South Africa. IBAs are sites of global significance for bird conservation, identified through multi-stakeholder processes using globally standardised, quantitative and scientifically agreed criteria;
- Coordinated Water Bird Counts (CWAC) The Animal Demography Unit (ADU) launched the • Coordinated Waterbird Counts (CWAC) project in 1992 as part South Africa's commitment to international waterbird conservation. The primary aim of CWAC is to act as an effective long-term waterbird monitoring tool. This is being done by means of a programme of regular mid-summer and mid-winter censuses at several wetlands. The database is located at https://cwac.birdmap.africa/index.php.
- Coordinated Avifaunal Roadcounts (CAR) The Coordinated Avifaunal Roadcounts (CAR) were
 pioneered in July 1993 in a joint Cape Bird Club/Animal Demography Unit (ADU) project to
 monitor the populations of two threatened species: *Anthropoides paradiseus* (Blue Crane) and *Neotis denhamii* (Denham's Bustard). Presently it monitors 36 species of large terrestrial birds
 along 350 fixed routes covering over 19 000 km using a standardised method.
- The Western Cape Biodiversity Spatial Plan (WCBSP) The Western Cape Department of Environmental Affairs and Planning (WCDEAP), as custodian of the environment in the Western Cape is the primary implementing agent of the Biodiversity Spatial Plan. The spatial component of the Biodiversity Sector Plan is based on systematic biodiversity planning undertaken by WCDEAP. The Biodiversity Sector Plan aims to inform land-use planning, environmental assessments, land, and water use authorisations, as well as natural resource management, undertaken by a range of sectors whose policies and decisions impact biodiversity. This is done by providing a map of biodiversity priority areas, referred to as Critical Biodiversity Areas (CBAs) and Ecological Support Areas (ESAs), with accompanying land-use planning and decisionmaking guidelines (WCDEAP, 2017), and

- Hydrological Context
 - South African Inventory of Inland Aquatic Ecosystems (SAIIAE) (Van Deventer *et al.*, 2018) A South African Inventory of Inland Aquatic Ecosystems (SAIIAE) was established during the National Biodiversity Assessment of 2018. It is a collection of data layers that represent the extent of river and inland wetland ecosystem types as well as pressures on these systems.
 - National Freshwater Ecosystem Priority Area (NFEPA) (Nel *et al.*, 2011) The NFEPA database provides strategic spatial priorities for conserving the country's freshwater ecosystems and associated biodiversity as well as supporting sustainable use of water resources.

3.1.2 Expected Avifauna Species

The following resources were considered during the desktop assessment and for the compilation of the expected species list:

- South African Bird Atlas Project 2 (SABAP2). Full protocol data from 13 relevant pentads (3115_1750; 3115_1755; 3120_1750; 3120_1755; 3120_1810, 3125_1755; 3125_1800; 3125_1805; 3125_1810; 3130_1800; 3130_1805; 3130_1810; 3130_1815) were used to compile the expected species list;
- Coordinated Water Bird Counts (CWAC) The Animal Demography Unit (ADU) launched the Coordinated Waterbird Counts (CWAC) project in 1992 as part of South Africa's commitment to international waterbird conservation. The primary aim of CWAC is to act as an effective long-term waterbird monitoring tool. This is done through a programme of regular mid-summer and midwinter censuses at several wetlands. The database is located at https://cwac.birdmap.africa/index.php;
- Coordinated Avifaunal Roadcounts (CAR) The Coordinated Avifaunal Roadcounts (CAR) were
 pioneered in July 1993 in a joint Cape Bird Club/ADU project to monitor the populations of two
 threatened species: Anthropoides paradiseus (Blue Crane) and Neotis denhamii (Denham's
 Bustard). Presently it monitors 36 species of large terrestrial birds along 350 fixed routes covering
 over 19 000 km using a standardised method;
- Important Bird and Biodiversity Areas (BirdLife South Africa, 2022) Important Bird and Biodiversity Areas (IBAs) constitute a global network of over 13 500 sites, of which 112 are found in South Africa. IBAs are sites of global significance for bird conservation, identified through multistakeholder processes using globally standardised, quantitative and scientifically agreed criteria;
- Hockey *et al.* (2005), Roberts Birds of Southern Africa (7th edition). The primary source for species identification, geographic range, and life history information;
- Sinclair and Ryan (2010), Birds of Africa South of the Sahara. Secondary source for identification; and
- Taylor *et al.* (2015), Eskom Red Data Book of Birds of South Africa, Lesotho, and Swaziland. Used for conservation status, nomenclature, and taxonomical ordering.

3.2 Field Survey

Only one site visit was conducted. The field investigation was conducted over 6 days from the 13th to the 18th of May, 2023. Sampling consisted of Standardised Point Counts as well as random diurnal incidental surveys. Standardised Point Counts (Buckland et al., 1993) were conducted to gather data on the species composition and relative abundance of species within the broad habitat types identified. The Standardized Point Count technique was utilised as it was demonstrated to outperform line routes (Cumming & Henry, 2019). Each point count was run over 10 minutes. The horizontal detection limit was set at 150 m. At each

BI

point, the observer would document the date, start time, and end time, habitat, numbers of each species, detection method (seen or heard), behaviour (perched or flying) and general notes on habitat and nesting suitability for conservation important species. Diurnal and nocturnal incidental searches were conducted to supplement the species inventory with cryptic and elusive species that may not be detected during the rigid point count protocol. This involved opportunistic species sampling between point count periods, random meandering and road cruising. An effort was made to cover all the different habitat types within the limits of time and access (Figure 3-1).

Figure 3-1 Map illustrating the field survey area and locations of Standardised Point Counts for the proposed development PAOI

3.3 Data Analysis

The analyses described below only used the data collected from the Standardised Point Counts for this proposed project. However, if there are any distinct difference between the report it will be highlighted. Raw count data was converted to relative abundance values and used to establish dominant species and calculate the diversity of each habitat. Present, and potentially occurring species were assigned to 13 major trophic guilds loosely based on the classification system developed by González-Salazar *et al.* (2014). Species were first classified by their dominant diet (carnivore, herbivore, granivore, frugivore, nectarivore, omnivore), then by the medium upon / within which they most frequently forage (ground, water, foliage, air) and lastly by their activity period (nocturnal or diurnal).

3.4 Site Ecological Importance

The different habitat types within the project area were delineated and identified based on observations during the field assessment, and available satellite imagery. These habitat types were assigned Ecological Importance (EI) categories based on their ecological integrity, conservation value, the presence of species of conservation concern and their ecosystem processes.

Site Ecological Importance (SEI) is a function of the Biodiversity Importance (BI) of the receptor (e.g., SCC, the vegetation/fauna community or habitat type present on the site) and Receptor Resilience (RR) (its resilience to impacts) as follows.

BI is a function of Conservation Importance (CI) and the Functional Integrity (FI) of the receptor as follows. The criteria for the CI and FI ratings are provided in Table 3-1 and Table 3-2, respectively.

 Table 3-1
 Summary of Conservation Importance (CI) criteria

Conservation Importance	Fulfilling Criteria		
Very High	Confirmed or highly likely occurrence of Critically Endangered (CR), Endangered (EN), Vulnerable (VU) or Extremely Rare or CR species that have a global extent of occurrence (EOO) of < 10 km ² . Any area of natural habitat of a CR ecosystem type or large area (> 0.1% of the total ecosystem type extent) of natural habitat of an EN ecosystem type. Globally significant populations of congregatory species (> 10% of global population).		
High	Confirmed or highly likely occurrence of CR, EN, VU species that have a global EOO of > 10 km ² . IUCN threatened species (CR, EN, VU) must be listed under any criterion other than A. If listed as threatened only under Criterion A, include if there are less than 10 locations or < 10 000 mature individuals remaining. Small area (> 0.01% but < 0.1% of the total ecosystem type extent) of natural habitat of EN ecosystem type or large area (> 0.1%) of natural habitat of VU ecosystem type. Presence of Rare species. Globally significant populations of congregatory species (> 1% but < 10% of global population).		
Medium	Confirmed or highly likely occurrence of populations of Near Threatened (NT) species, threatened species (CR, EN, VU) listed under Criterion A only and which have more than 10 locations or more than 10 000 mature individuals. Any area of natural habitat of threatened ecosystem type with status of VU. Presence of range-restricted species. > 50% of receptor contains natural habitat with potential to support SCC.		
Low	No confirmed or highly likely populations of SCC. No confirmed or highly likely populations of range-restricted species. < 50% of receptor contains natural habitat with limited potential to support SCC.		
Very Low	No confirmed and highly unlikely populations of SCC. No confirmed and highly unlikely populations of range-restricted species. No natural habitat remaining.		

Table 3-2 Summary of Functional Integrity (FI) criteria

Functional Integrity	Fulfilling Criteria		
Very High	Very large (> 100 ha) intact area for any conservation status of ecosystem type or > 5 ha for CR ecosystem types. High habitat connectivity serving as functional ecological corridors, limited road network between intact habitat patches. No or minimal current negative ecological impacts, with no signs of major past disturbance.		
High	Large (> 20 ha but < 100 ha) intact area for any conservation status of ecosystem type or > 10 ha for EN ecosystem types. Good habitat connectivity, with potentially functional ecological corridors and a regularly used road network between intact habitat patches. Only minor current negative ecological impacts, with no signs of major past disturbance and good rehabilitation potential.		
Medium	 Medium (> 5 ha but < 20 ha) semi-intact area for any conservation status of ecosystem type or > 20 ha for VU ecosystem types. Only narrow corridors of good habitat connectivity or larger areas of poor habitat connectivity and a busy used road network between intact habitat patches. Mostly minor current negative ecological impacts, with some major impacts and a few signs of minor past disturbance. Moderate rehabilitation potential. 		
Low	Small (> 1 ha but < 5 ha) area. Almost no habitat connectivity but migrations still possible across some modified or degraded natural habitat and a very busy used road network surrounds the area. Low rehabilitation potential. Several minor and major current negative ecological impacts.		
Very Low	Very small (< 1 ha) area. No habitat connectivity except for flying species or flora with wind-dispersed seeds. Several major current negative ecological impacts.		

BI can be derived from a simple matrix of CI and FI as provided in Table 3-3.

Table 3-3Matrix used to derive Biodiversity Importance (BI) from Functional Integrity (FI)
and Conservation Importance (CI)

Diadivaraity Importance (DI)		Conservation Importance (CI)						
biourversity in	ilportarice (BI)	Very High	High	Medium	Low	Very Low		
ity	Very High	Very High	Very High	High	Medium	Low		
ntegr	High	Very High	High	Medium	Medium	Low		
nal lı (FI)	Medium	High	Medium	Medium	Low	Very Low		
nctio	Low	Medium	Medium	Low	Low	Very Low		
E	Very Low	Medium	Low	Very Low	Very Low	Very Low		

The fulfilling criteria to evaluate RR are based on the estimated recovery time required to restore an appreciable portion of functionality to the receptor, as summarised in Table 3-4.

Table 3-4	Summary of Receptor Resilience (RR) criteria
-----------	--

Resilience	Fulfilling Criteria
Very High	Habitat that can recover rapidly (~ less than 5 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a very high likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.
High	Habitat that can recover relatively quickly (~ 5–10 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a high likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.
Medium	Will recover slowly (~ more than 10 years) to restore > 75% of the original species composition and functionality of the receptor functionality, or species that have a moderate likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.
Low	Habitat that is unlikely to be able to recover fully after a relatively long period: > 15 years required to restore ~ less than 50% of the original species composition and functionality of the receptor functionality, or species that have a low likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.
Very Low	Habitat that is unable to recover from major impacts, or species that are unlikely to: (i) remain at a site even when a disturbance or impact is occurring, or (ii) return to a site once the disturbance or impact has been removed.

Subsequent to the determination of the BI and RR, the SEI can be ascertained using the matrix as provided in Table 3-5.

Table 3-5 Matrix used to derive Site Ecological Importance from Receptor Resilience (RR) and Biodiversity Importance (BI)

Site Ecological Importance		Biodiversity Importance (BI)						
		Very high High Medium		Low	Very low			
-	Very Low	Very high	Very high	High	Medium	Low		
eceptor ence (RR)	Low	Very high	Very high	High	Medium	Very low		
	Medium	Very high	High	Medium	Low	Very low		
sR Resili	High	High	Medium	Low	Very low	Very low		
-	Very High	Medium	Low	Very low	Very low	Very low		

Interpretation of the SEI in the context of the proposed project is provided in Table 3-6.

Table 3-6Guidelines for interpreting Site Ecological Importance in the context of the
proposed development activities

Site Ecological Importance	Interpretation in relation to proposed development activities
Very High	Avoidance mitigation – no destructive development activities should be considered. Offset mitigation not acceptable/not possible (i.e., last remaining populations of species, last remaining good condition patches of ecosystems/unique species assemblages). Destructive impacts for species/ecosystems where persistence target remains.
High	Avoidance mitigation wherever possible. Minimisation mitigation – changes to project infrastructure design to limit the amount of habitat impacted, limited development activities of low impact acceptable. Offset mitigation may be required for high impact activities.
Medium	Minimisation and restoration mitigation – development activities of medium impact acceptable followed by appropriate restoration activities.
Low	Minimisation and restoration mitigation – development activities of medium to high impact acceptable followed by appropriate restoration activities.
Very Low	Minimisation mitigation – development activities of medium to high impact acceptable and restoration activities may not be required.

The SEI evaluated for each taxon can be combined into a single multi-taxon evaluation of SEI for the assessment area. Either a combination of the maximum SEI for each receptor should be applied, or the SEI may be evaluated only once per receptor but for all necessary taxa simultaneously. For the latter, justification of the SEI for each receptor is based on the criteria that conforms to the highest CI and FI, and the lowest RR across all taxa. For the purposes of this assessment, only avifauna were considered.

3.5 Environmental Impact Assessment

The impact significance rating methodology, is guided by the requirements of the NEMA EIA Regulations 2014 (as amended). Direct, indirect and cumulative impacts associated with the projects must be assessed in terms of the following criteria:

- The extent, wherein it will be indicated whether the impact will be local (limited to the immediate area or site of development) or regional, and a value between 1 and 5 will be assigned as appropriate (with 1 being low and 5 being high):
- The duration, wherein it will be indicated whether:
 - the lifetime of the impact will be of a very short duration (0–1 years) assigned a score of 1;
 - the lifetime of the impact will be of a short duration (2-5 years) assigned a score of 2;
 - medium-term (5–15 years) assigned a score of 3;
 - long term (> 15 years) assigned a score of 4; or
 - o permanent assigned a score of 5;
- The magnitude, quantified on a scale from 0-10, where 0 is small and will have no effect on the environment, 2 is minor and will not result in an impact on processes, 4 is low and will cause a slight impact on processes, 6 is moderate and will result in processes continuing but in a modified way, 8 is high (processes are altered to the extent that they temporarily cease), and 10 is very high and results in complete destruction of patterns and permanent cessation of processes.
- The probability of occurrence, which shall describe the likelihood of the impact actually occurring. Probability will be estimated on a scale of 1–5, where 1 is very improbable (probably will not happen), 2 is improbable (some possibility, but low likelihood), 3 is probable (distinct possibility),

4 is highly probable (most likely) and 5 is definite (impact will occur regardless of any prevention measures).

- the significance, which shall be determined through a synthesis of the characteristics described above and can be assessed as low, medium or high; and
- the status, which will be described as either positive, negative or neutral.
- the degree to which the impact can be reversed.
- the degree to which the impact may cause irreplaceable loss of resources.
- the degree to which the impact can be mitigated.

The **significance** is calculated by combining the criteria in the following formula:

S = (E+D+M) P

- S = Significance weighting
- E = Extent
- D = Duration
- M = Magnitude
- P = Probability

The **significance weightings** for each potential impact are as follows:

- < 30 points: Low (i.e., where this impact would not have a direct influence on the decision to develop in the area),
- 30-60 points: Medium (i.e., where the impact could influence the decision to develop in the area unless it is effectively mitigated),
- > 60 points: High (i.e., where the impact must have an influence on the decision process to develop in the area).

4 Results & Discussion

4.1 Desktop Assessment

4.1.1 Ecologically Important Landscape Features

The following features describe the general area and habitat. This assessment is based on spatial data from various sources, such as the provincial environmental authority and SANBI. The desktop analysis and its relevance to this project are listed in Table 4-1.

Table 4-1Summary of the relevance of the proposed development to ecologically important
landscape features

Desktop Information Considered	Relevant/Irrelevant	Section
Biodiversity Spatial Plan	Relevant - The PAOI overlaps with CBA1, ESA	4.1.1.1
Ecosystem Threat Status	Relevant - The proposed PAOI overlaps with a LC ecosystem	4.1.1.2
Ecosystem Protection Level	Relevant - The proposed PAOI project overlaps mainly with PP ecosystem	4.1.1.3
Protected Areas	Irrelevant - The PAOI is not in close proximity to nature reserves	4.1.1.4
National Protected Areas Expansion Strategy	Irrelevant - The PAOI does not overlap with any NPAES areas	4.1.1.5
Important Bird and Biodiversity Areas	Irrelevant - The PAOI does not overlap with any IBA	4.1.1.6
Coordinated Avifaunal Road Count	Irrelevant - The PAOI does not overlap with Coordinated Avifaunal Roadcount	4.1.1.7
Coordinated Waterbird Count	Irrelevant - The PAOI does not overlap Coordinated Waterbird Count	4.1.1.8
Strategic Water Source Areas	Irrelevant - The PAOI does not fall within any Strategic Water Source Areas	4.1.1.9
South African Inventory of Inland Aquatic Ecosystems	Relevant - The PAOI does overlap with threatened wetlands	4.1.1.9
National Freshwater Priority Area	Relevant - The PAOI does overlaps with some FEPA wetlands	4.1.1.9

4.1.1.1 Western Cape Conservation Plan

The Western Cape Department of Environmental Affairs and Planning (WCDEAP) developed the Western Cape Biodiversity Sector Plan (WCBSP) in 2017. It is a spatial database guiding areas of conservation concern and biodiversity planning for the Western Cape Province. Two databases have been developed, one for terrestrial biodiversity and the other for freshwater/aquatic biodiversity. The spatial component of the Biodiversity Sector Plan is based on systematic biodiversity planning undertaken by WCDEADP. A Biodiversity Sector Plan aims to inform land-use planning, environmental assessments, land and water use authorisations, as well as natural resource management, undertaken by a range of sectors whose policies and decisions impact biodiversity. This is done by providing a map of biodiversity priority areas, referred to as Critical Biodiversity Areas (CBAs) and Ecological Support Areas (ESAs), with accompanying land-use planning and decision-making guidelines (WCDEADP, 2017).

Critical Biodiversity Areas (CBAs) are terrestrial and aquatic areas of the landscape that need to be maintained in a natural or near-natural state to ensure the continued existence and functioning of species and ecosystems and the delivery of ecosystem services. Thus, biodiversity targets cannot be met if these areas are not maintained in a natural or near-natural state. Maintaining an area in a natural state can include a variety of biodiversity-compatible land uses and resource uses (WCDEADP, 2017).

Ecological Support Areas (ESAs) are terrestrial and aquatic areas that are not essential for meeting biodiversity representation targets (thresholds) but play an important role in supporting the ecological functioning of critical biodiversity areas and/or in delivering ecosystem services that support socioeconomic development, such as water provision, flood mitigation or carbon sequestration. The degree or extent of the restriction on land use and resource use in these areas may be lower than that recommended for CBAs (WCDEADP, 2017).

Figure 4-1 Map illustrating the WCBSP associated with the PAOI.

4.1.1.2 Ecosystem Threat Status

The Ecosystem Threat Status is an indicator of an ecosystem's well-being based on the level of change in structure, function or composition. Ecosystem types are categorised as Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT) or Least Concern (LC), based on the proportion of the original extent of each ecosystem type that remains in good ecological condition. Relevant - The proposed PAOI overlaps with a LC ecosystem (Figure 4-2).

Figure 4-2 Map illustrating the ecosystem threat status associated with the PAOI.

4.1.1.3 Ecosystem Protection Level

This is an indicator of the extent to which ecosystems are adequately protected or under-protected. Ecosystem types are categorised as Well Protected (WP), Moderately Protected (MP), Poorly Protected (PP), or Not Protected (NP), based on the proportion of the biodiversity target for each ecosystem type that is included within one or more protected areas. NP, PP or MP ecosystem types are collectively referred to as under-protected ecosystems. Relevant - The proposed PAOI project overlaps mainly with PP ecosystem (Figure 4-3).

Figure 4-3 Map illustrating the ecosystem protection level associated with the PAOI

4.1.1.4 Protected Areas

According to the protected area spatial datasets from SAPAD (DFFE, 2022) and SACAD (DFFE, 2022). Irrelevant - The PAOI is not in close proximity to nature reserves (Figure 4-4).

Figure 4-4 Map illustrating the Project Area of Influence (PAOI) in relation to Conservation and Protected Areas

4.1.1.5 National Protected Area Expansion Strategy

National Protected Area Expansion Strategy (NPAES) areas were identified through a systematic biodiversity planning process. They presented the best opportunities for meeting the ecosystem-specific protected area targets set in the NPAES and were designed with a strong emphasis on climate change resilience and requirements for protecting freshwater ecosystems. These areas should not be seen as future boundaries of protected areas, as in many cases, only a portion of a particular focus area would be required to meet the protected area targets set in the NPAES. They are also not a replacement for fine-scale planning, which may identify different priority sites based on local requirements, constraints and opportunities (DFFE, 2021). Irrelevant - The PAOI does not overlap with any NPAES areas (Figure 4-5).

Figure 4-5 Map illustrating the Project Area of Influence (PAOI) in relation to NPAES Focus Areas

4.1.1.6 Important Bird and Biodiversity Area

Important Bird & Biodiversity Areas (IBAs) are the sites of international significance for the conservation of the world's birds and other conservation significant species as identified by BirdLife International. These sites are also all Key Biodiversity Areas; sites that contribute significantly to the global persistence of biodiversity (BirdLife South Africa, 2017).

According to Birdlife South Africa (2017), selecting IBAs is achieved by applying quantitative ornithological criteria grounded in up-to-date knowledge of the sizes and trends of bird populations. The criteria ensure that the sites selected as IBAs have true significance for the international conservation of bird populations and provide a common currency that all IBAs adhere to, thus creating consistency among and enabling comparability between sites at national, continental and global levels. Irrelevant - The PAOI does not overlap with any IBA (Figure 4-6).

Figure 4-6 Map illustrating the locations of Important Bird and Biodiversity Areas proximal to the Project Area of Influence (PAOI)

4.1.1.7 Coordinated Avifaunal Roadcount (CAR)

The Animal Demographic Unit (ADU)/Cape bird club pioneered the avifaunal road counts of larger birds in 1993 in South Africa. Originally it was started to monitor the Blue Crane (*Anthropoides paradiseus*) and Denham's/Stanley's Bustard (*Neotis Denham*). Today it has been expanded to monitor 36 species of large terrestrial birds (cranes, bustards, korhaans and storks) along 350 fixed routes covering over 19 000 km. Road counts are carried out twice yearly in midsummer (the last Saturday in January) and midwinter (the last Saturday in July) using this standardised method. These counts are essential for conserving these larger species that are under threat due to habitat loss through land use changes, increases in crop agriculture and human population densities, poisoning, and man-made structures like powerlines. With the prospect of increasing wind and solar farms, using renewable energy sources and monitoring these species is most important (CAR, 2020). Irrelevant - The PAOI does not overlap with Coordinated Avifaunal Roadcount Routes (Figure 4-7).

Figure 4-7 Map illustrating the locations of Coordinated Avifaunal Roadcount proximal to the Project Area of Influence (PAOI)

4.1.1.8 Coordinated Waterbird Count

The ADU launched the Coordinated Waterbird Counts (CWAC) project in 1992 as part of South Africa's commitment to international waterbird conservation. Regular mid-summer and mid-winter censuses are done to determine the various features of water birds, including population size, how waterbirds utilise water sources and determining the health of wetlands. For a full description of CWAC, please refer to http://cwac.birdmap.africa/about.php. Irrelevant - The PAOI does not overlap Coordinated Waterbird Count sites (Figure 4-8).

Figure 4-8 Map illustrating the locations of Coordinated Waterbird Counts proximal to the Project Area of Influence (PAOI)

4.1.1.9 Hydrological Context

Irrelevant - The PAOI does not fall within any Strategic Water Source Areas (SWSA).

The South African Inventory of Inland Aquatic Ecosystems (SAIIAE) was released with the NBA 2018. The ecosystem threat status (ETS) of the river and wetland ecosystem types is based on the extent to which each river ecosystem type has been altered from its natural condition. Ecosystem types are categorised as CR, EN, VU or LT, with CR, EN and VU ecosystem types collectively referred to as 'threatened' (Van Deventer et al., 2019; Skowno et al., 2019). Relevant - The PAOI does overlap with threatened wetlands (Figure 4-9).

In an attempt to better conserve aquatic ecosystems, South Africa has categorised its river systems according to set ecological criteria (i.e., ecosystem representation, water yield, connectivity, unique features, and threatened taxa) to identify Freshwater Ecosystem Priority Areas (FEPAs) (Driver et al., 2011). The FEPAs are intended to be conservation support tools and are envisioned to guide the effective implementation of measures to achieve the National Environment Management Biodiversity Act's (NEMBA) biodiversity goals (Nel et al., 2011). Relevant - The PAOI does overlaps with some FEPA wetlands (Figure 4-10).

Figure 4-9Map illustrating the Project Area of Influence (PAOI) in relation to South African
Inventory of Inland Aquatic Ecosystems (SAIIAE) features

Figure 4-10 Map illustrating the Project Area of Influence (PAOI) in relation to the National Freshwater Ecosystem Priority Areas

the BIODIVERSITY company

Prospecting Right Application

4.2 Expected Species of Conservation Concern

The SABAP2 Data lists 138 indigenous avifauna species that could be expected to occur within the PAOI and surrounding landscape (Figure 4-11; Appendix A). One 1) of these expected species is regarded as SCC (Table 4-2). These species are described below. However, this is not a true representation of the area.

Expected avifauna Species of Conservation Concern that are expected to occur within the PAOI. CR = Critically Endangered, EN = Endangered, LC = Least Concern, NT = Near Threatened and VU = Vulnerable

Scientific Name	Common Name	Regional	Global	Likelihood of Occurrence
Afrotis afra	Southern Black Korhaan	VU	VU	High
Anthropoides paradiseus	Blue Crane	NT	VU	low
Calidris ferruginea	Curlew Sandpiper	LC	NT	low
Circus maurus	Black Harrier	EN	EN	Moderate
Geocolaptes olivaceus	Ground Woodpecker	LC	NT	Moderate
Hydropogne caspia	Caspian Tern	VU	LC	low
Microcarbo coronatus	Crowned Cormorant	NT	LC	low
Morus capensis	Cape Gannet	VU	EN	Moderate
Neotis Iudwigii	Ludwig's Bustard	EN	EN	High
Phalacrocorax capensis	Cape Cormorant	EN	EN	High
Phalacrocorax neglectus	Bank Cormorant	EN	EN	Low
Phoeniconaias minor	Lesser Flamingo	NT	NT	Low
Phoenicopterus roseus	Greater Flamingo	NT	LC	High

Table 4-2

Polemaetus bellicosus	Martial Eagle	EN	EN	High
*(Taylor et al. 2015), + (IUCN 2021)				

Afrotis afra (Southern Black Korhaan) is listed as Vulnerable (VU) on a regional and global scale (IUCN, 2017). They are endemic to the South-Western side of South Africa. Their habitat varies from non-grassy areas to the Fynbos biome, Karoo biome and the western coastline of South Africa. The main threat to them is habitat loss, in an eight year span they loss 80% of their range due to agricultural developments. Their diet consists of insects, small reptiles and plant material, including seeds and green shoots (Hockey *et al.* 2005).

Circus maurus (Black Harrier) is listed as Endangered (EN) on a local basis and is restricted to southern Africa, where it is mainly found in the fynbos and Karoo of the Western and Eastern Cape. It is also found in the grasslands of Free State, Lesotho and KwaZulu-Natal. Harriers breed close to coastal and upland marshes, damp sites, near vleis or streams with tall shrubs or reeds. South-facing slopes are preferred in mountain areas where temperatures are cooler, and vegetation is taller (IUCN, 2017). During the non-breeding season, they will also be found in dry grassland areas further north and they also visit coastal river floodplains in Namibia. The likelihood of occurrence is rated as moderate.

Geocolaptes olivaceus (Ground Woodpecker) is categorised as near-threatened on a global scale. It occurs on rocky slopes, mostly in areas dominated by grass and shrubs; including road cuttings or derelict buildings (Hockey *et al.* 2005). It is mainly sedentary but there is some suggestion that it could be an altitudinal migrant, and individuals may wander away from mountainous areas in the non-breeding season. Afforestation may be a threat to the species and this species has also been considered to be potentially under threat from climate change, and temperatures in South Africa have been reported to be rising. Due to the rocky habitat the likelihood of occurrence in the project area is rated as high.

Morus capensis (Cape Gannet) is listed as vulnerable on a regional scale and as endangered on a global scale. This species has undergone a large population reduction over the past three generations and is projected to continue to decline rapidly over the next three generations. The species is a marine species that during the non breeding season can be found as far as 120km inland. The likelihood of this species being present in the project site is rated as high.

Phalacrocorax capensis (Cape Cormorant) is endemic to the southwestern coast of Africa, but during the non breeding season they spread inland and up the east coast of South Africa. The IUCN as well as Birdlife South Africa lists these birds as endangered, and the main cause of the decline is as a result of the decline of the epipelagic fish stock, oil spills and avian cholera. Due to the lack of suitable habitat and proximity of the urban area, the likelihood of occurrence is rated as low.

Phoenicopterus roseus (Greater Flamingo) is listed as NT on a regional scale only. This species breed on large undisturbed alkaline and saline lakes, salt pans or coastal lagoons, usually far out from the shore after seasonal rains have provided the flooding necessary to isolate remote breeding sites from terrestrial predators and the soft muddy material for nest building (IUCN, 2017). Due to the absence of its preferred habitat within the Project area, combined the proximity of the urban area, the likelihood of occurrence is rated as low.

Polemaetus bellicosus (Martial Eagle) is listed as EN on a regional scale and VU on a global scale. This species has an extensive range across much of sub-Saharan Africa, but populations are declining due to deliberate and incidental poisoning, habitat loss, reduction in available prey, pollution and collisions with power lines (IUCN, 2017). It inhabits open woodland, wooded savanna, bushy grassland, thorn-bush and, in southern Africa, more open country and even sub-desert (IUCN, 2017). With the presence of good grassland habitat in the project area but an absence of large trees for roosting and nesting this species may only use the site for foraging and thus there is a moderate chance of this species occurring.

4.3 Field Assessment

4.3.1 Species List of the Field Survey

Only one site visit was conducted. The field investigation was conducted over 6 days from the 13th to the 18th of May, 2023 (Appendix B). The total number of individual species accounts for approximately 34.3% of the total number of expected species

Eight SCC was recorded within the PAOI during the survey period *Phalacrocorax capensis* (Cape Cormorant), *Phoenicopterus roseus* (Greater Flamingo), *Sagittarius serpentarius* (Secretarybird), *Afrotis afra* (Southern Black Korhaan), *Neotis ludwigii* (Ludwig's Bustard), *Ardeotis kori* (Kori Bustard), *Geocolaptes olivaceus* (Ground Woodpecker), *Polemaetus bellicosus* (Martial Eagle) and they were recorded 46 times during the surveying period.

Figure 4-12 Sagittarius serpentarius (Secretarybird) observed in the northern parts of the proposed prospecting site.

4.3.1.1 Dominant Species

Table 4-3 provides the relative abundance of the 220 most dominant species as well as the frequency with which each species appeared in the point count samples. The most abundant species were the *Larus moninicarus* (Kelp Gull) and *Passer melanuruss* (Cape Sparrow), with a relative abundance of 0.121 and 0.112, respectively (Table 4-3). Additional ubiquitous species was *Cinnyris chalybeus* (Southern Double-collared Sunbird), with a frequency of occurrence of 78.667%.

Table 4-3Relative abundance and frequency of occurrence of dominant avifauna species recordedduring the standardised point counts within and around the proposed development during the field survey.

4.3.1.2 Trophic Guilds

Trophic guilds are defined as a group of species that exploit the same class of environmental resources in a similar way (González-Salazar *et al*, 2014). The guild classification used in this assessment is as per González-Salazar *et al* (2014); they divided avifauna into 13 major groups based on their diet, habitat,

and main area of activity. Although species to tend to exhibit varied diet with invertivores consuming fruit and frugivores consuming insects for example, the dominant composition of the diet was considered.

The analysis of the major avifaunal guilds reveals that the species composition during the survey was dominated by invertivores birds that feed on the ground during the day (IGD). Followed by Omnivore (OMD) (Figure 4-13). The species composition is spread throughout the various groups.

Figure 4-13 Column plot illustrating the proportion of each Functional Feeding Guild to the total abundance. Avifaunal trophic guilds – CGD, Carnivore Ground Diurnal; CGN, Carnivore Ground Nocturnal, CAN, Carnivore Air Nocturnal, CWD, Carnivore Water Diurnal; FFD, Frugivore Foliage Diurnal; GGD, Granivore Ground Diurnal; HWD, Herbivore Water Diurnal; IAD, Invertivore Air Diurnal; IGD, Insectivore Ground Diurnal; IWD, Invertivore Water Diurnal; NFD, Nectivore Foliage Diurnal; OMD, Omnivore Multiple Diurnal; IAN, Invertivore Air Nocturnal.

4.3.1.3 Nest Analysis

One confirmed nest site was recorded during the field investigation; however, it was approximately 11km from the PAOI.

4.4 Fine-Scale Habitat Use

Fine-scale habitats within the landscape are important in supporting a diverse avifauna community as they provide differing nesting, foraging and reproductive opportunities. Four different habitat types were delineated within the PAOI, comprising of mainly of Namaqualand Heuweltjie Strandveld, Namaqualand Inland Duneveld, Namaqualand Seashore Vegetation and modified landscape.

4.4.1 Namaqualand Heuweltjie Strandveld

Namaqualand Strandveld (which is part of the Namaqualand Sandveld bioregion) occurs in the Northern and Western Cape Provinces and is characterised by a flat to slightly undulating landscape of coastal peneplain. It is found on Quaternary stabilised deep aeolian red or yellow sands and on stable dunes and deep sand overlying marine sediments and gneisses. These sands are alkaline or neutral, as opposed to the Sand Fynbos sands which are usually slightly acidic. Sometimes weakly defined scattered heuweltjies (circular, abandoned termite mounds) are found further away from the sea. Although predominantly coastal, this vegetation may penetrate as far as 40 km inland from the sea, especially where coastal dune plumes extend inland and where there is a high incidence of coastal fog. Strandveld vegetation structure is highly variable, ranging in height from an average 30 cm to an average 1.2 m, but it is typically low, species-rich shrubland dominated by a variety of erect and creeping succulent and often deciduous shrubs. This widespread vegetation type could perhaps be divided into at least 6 or 8 distinct forms based on morphology and species composition, but this has not yet been done on a formal basis.

Figure 4-14 Photograph illustrating an example of intact strandveld observed in the PAOI

4.4.2 Namagualand Inland Duneveld

This vegetation type occurs in the Western and Northern Cape along the coastal plains. The vegetation is typically dwarf shrubland dominated by erect succulent shrubs and non-succulent shrubs. Spiny grasses are common on the windblown semi-stable dunes.

Figure 4-15 Photograph illustrating an example of the Duneveld habitat observed in the PAOI

Prospecting Right Application

4.4.3 Namaqualand Seashore Vegetation

the

BIODIVE

company

4.4.4 Modified Landscape

The modified area consisted primarily of urban development and existing electricity infrastructure and roads (Figure 4-17). These areas were mostly void of avifauna species, with the species recorded here being those resilient to disturbance. Species occurring here included *Passer melanurus* (Cape Sparrow), *Streptopelia capicola* (Cape Turtle Dive).

Figure 4-17 Photograph illustrating an example of the modified habitats observed in the broader assessment area

Figure 4-18 Map illustrating the habitat types delineated within the proposed development PAOI

5 Site Ecological Importance (SEI)

5.1 Environmental Screening Tool

The terrestrial biodiversity theme sensitivity as indicated by the screening tool report for the project area of influence, was derived to be 'Very High' as the proposed development PAOI overlaps with CBA1 and Ecological supporting areas (Figure 5-1).

Figure 5-1 Terrestrial Biodiversity Theme Sensitivity for the PAOI, National Web based Environmental Screening Tool

As indicated in the screening report, the Animal Species Theme sensitivity was derived from being 'High' for the PAOI (Figure 5-2), due to the likely presence of *Afrotis afra* and *Circus maurus*.

Figure 5-2 Fauna Theme Sensitivity for the PAOI, National Web based Environmental Screening Tool

5.2 Site Ecological Importance (SEI)

Based on the criteria provided in Section 3.4 of this report, all habitats within the assessment area of the proposed project were allocated a sensitivity or SEI category (Table 5-1). The SEI of the PAOI within an avifauna context was based on both the field results and desktop information. The SEI of the habitat types delineated is illustrated in Figure 5-3. The degraded grassland was given a medium rating based on the high likelihood of supporting SCCs. Only three SCC was recorded close to the PAOI, but a medium diversity of species in the Degraded Grasslands and Open Savannah was assigned a medium SEI and the modified area a very low SEI.

Table 5-1	SEI Summary of habitat types delineated within field assessment area of project
	area

Habitat	Conservation Importance	Functional Integrity	Biodiversity Importance	Receptor Resilience	Site Ecological Importance	Site Ecological Importance (SEI) Guidelines for interpreting SEI in the context of the proposed development activities
Strandveld	High Confirmed or highly likely occurrence of CR, EN, VU species that have a global EOO of >	High Only minor current negative ecological impacts with no signs of	High	Low Habitat that is unlikely to be able to recover fully after a relatively long period: > 15 years required to restore	Very High	Avoidance mitigation – no destructive development activities should be considered. Offset mitigation not acceptable/not possible (i.e., last remaining

Habitat	Conservation Importance	Functional Integrity	Biodiversity Importance	Receptor Resilience	Site Ecological Importance	Site Ecological Importance (SEI) Guidelines for interpreting SEI in the context of the proposed development activities
	10 km ² . IUCN threatened species (CR, EN, VU) must be listed under any criterion other than A.	major past disturbance and good rehabilitation potential.		~ less than 50% of the original species composition and functionality of the receptor functionality, or species that have a low likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.		populations of species, last remaining good condition patches of ecosystems/unique species assemblages). Destructive impacts for species/ecosystems where persistence target remains.
	High	High		Low		
Duneveld	Confirmed or highly likely occurrence of CR, EN, VU species that have a global EOO of > 10 km ² . IUCN threatened species (CR, EN, VU) must be listed under any criterion other than A.	Only minor current negative ecological impacts with no signs of major past disturbance and good rehabilitation potential.	High	Habitat that is unlikely to be able to recover fully after a relatively long period: > 15 years required to restore ~ less than 50% of the original species composition and functionality of the receptor functionality, or species that have a low likelihood of: (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed.	Very High	Avoidance mitigation – no destructive development activities should be considered. Offset mitigation not acceptable/not possible (i.e., last remaining populations of species, last remaining good condition patches of ecosystems/unique species assemblages). Destructive impacts for species/ecosystems where persistence target remains.
	High	High		Low		Avoidance mitigation – no
Seashore	Confirmed or highly likely occurrence of CR, EN, VU species that have a global EOO of > 10 km ² . IUCN threatened species (CR, EN, VU) must be listed under any criterion other than A.	Only minor current negative ecological impacts with no signs of major past disturbance and good rehabilitation potential.	High	Habitat that is unlikely to be able to recover fully after a relatively long period: > 15 years required to restore ~ less than 50% of the original species composition and functionality of the receptor functionality, or species that have a low likelihood of:	Very High	activities should be considered. Offset mitigation not acceptable/not possible (i.e., last remaining populations of species, last remaining good condition patches of ecosystems/unique species assemblages). Destructive impacts for species/ecosystems where persistence target remains.

Habitat	Conservation Importance	Functional Integrity	Biodiversity Importance	Receptor Resilience	Site Ecological Importance	Site Ecological Importance (SEI) Guidelines for interpreting SEI in the context of the proposed development activities
				 (i) remaining at a site even when a disturbance or impact is occurring, or (ii) returning to a site once the disturbance or impact has been removed. 		
	Very Low	Very Low		Very High		
Modified	No confirmed and highly unlikely populations of SCC. No confirmed and highly unlikely populations of range-restricted species. No natural habitat remaining.	Several major current negative ecological impacts.	Very Low	Habitat that can recover rapidly	Very Low	Minimisation mitigation – development activities of medium to high impact acceptable and restoration activities may not be required.

Figure 5-3 Map illustrating the Site Ecological Importance of the proposed development within an avifauna context

6 Impact Assessment

Potential impacts were evaluated against the data captured during the fieldwork and from a desktop perspective to identify relevance to the project site, specifically the proposed development footprint area. The assessment of the significance of direct, indirect and cumulative impacts was undertaken. Bennun *et al* (2021) describes three broad types of impacts associated with solar energy development:

- Direct impacts Impacts that result from project activities or operational decisions that can be predicted based on planned activities and knowledge of local biodiversity, such as habitat loss under the project footprint, habitat fragmentation as a result of project infrastructure and species disturbance or mortality as a result of project operations.
- Indirect impacts Impacts induced by, or 'by-products' of, project activities within a project's area of influence.
- Cumulative impacts Impacts that result from the successive, incremental and/or combined effects of existing, planned and/or reasonably anticipated future human activities in combination with project development impacts.

6.1 Present Impacts to Avifauna

In consideration that there are anthropogenic activities and influences are present within the landscape, there are several negative impacts to biodiversity, including avifauna (Figure 6-1). These include:

- Current Mining Activities;
- Noise pollution;
- Minor and major gravel roads and associated vehicle traffic;
- Invasive Alien Plants;
- Livestock agriculture; and
- Fences and associated infrastructure.

Figure 6-1 Photograph illustrating an example of impacts observed within the proposed development.

6.2 Anticipated Impacts

This section describes the potential impacts on avifauna associated with prospecting rights within the project area of interest. During the prospecting, vegetation clearing will occur, leading to direct habitat loss. Vegetation clearing will create a disturbance and potentially lead to avifaunal species' displacement. The operation of prospecting machinery on site will generate noise pollution. Increased human presence can lead to poaching, and the increase in vehicle traffic and heavy machinery may lead to roadkill.

6.3 Alternatives

No alternatives were considered.

6.1 Loss of Irreplaceable Resources

The proposed prospecting will lead to the loss of the following irreplaceable resources:

• Habitat and possible nesting sites for avifauna SCC.

6.2 Assessment of Impact Significance

The assessment of impact significance considers pre-mitigation and implementation of post-mitigation scenarios. Although different species and groups will react differently to the development, the risk assessment was undertaken considering the potential impacts on the SCC listed in this report.

6.2.1 Prospecting phase

The following potential main impacts on the biodiversity were considered for the prospecting phase within the proposed area.

The following potential impacts were considered:

- Loss of habitat within the project footprint (Table 6-1);
- Displacement of avifauna community (including SCC) due to disturbance from increased human presence and noise pollution (Table 6-2); and
- Direct mortality from vegetation clearing, increased vehicle traffic and poaching, including the collection of eggs (Table 6-3).

Table 6-1 Loss of habitat within the PAOI

Impact Nature: Loss of habitat within prospecting footprint Habitat destruction within the prospecting footprint					
Extent	Low (2)	Very Low (1)			
Duration	Very short duration (1)	Very short duration (1)			
Magnitude	Moderate and will result in processes continuing but in a modified way (6)	Minor and will not result in an impact on processes (2)			
Probability	Highly probable (4)	Probable (3)			
Significance	Medium (36)	Low (12)			
Status (positive or negative)	Negative	Negative			

Reversibility Low High		High		
Irreplaceable loss of resources? No No				
Can impacts be mitigated?	Yes, each prospecting site can be mitigated they can continue with any additional prospective have started.	Yes, each prospecting site can be mitigated. 5 sites can be drilled at a time and before they can continue with any additional prospecting sites the rehabilitation process should have started.		
Mitigation:				
 Minimal clearing of all 'Very Hig Avoid prospecting along the Narareas. Demarcate prospecting areas to Do not clear areas of indigenous Minimise vegetation clearing to Environmental Officer (EO) to p Compile and implement a Reha A maximum of 5 sites can be rehabilitation process should ha A long-term rehabilitation plan m Progressive rehabilitation will er seedbank. Surplus rehabilitation Indigenous vegetation to be ma Environmental induction for all awareness of no littering, approdemarcated construction areas 	n' habitats. naqualand Seashore Vegetation. Offset mitigat a void affecting outside areas. Use physical bases a vegetation outside of the direct project footprises the minimum required. Trovide supervision and oversight of vegetation bilitation Plan from the onset of the project. drilled at a time and before they can continue ve started and signed off by EO. eeds to be followed and monitored carefully. hable topsoil to be returned more rapidly, thus material can be applied to other others in nee nationed as far as possible staff on site to ensure that basic environment opriate handling of pollution and chemical spietc.	tion will be required for activities within these arriers and signage. int. clearing activities. e with any additional prospecting sites the ensuring more recruitment from the existing d of stabilisation and vegetation cover. tal principles are adhered to. This includes ills, avoiding fire hazards, remaining within		
The loss of currently intact vegetation is a	unavoidable consequence of the project and	cannot be entirely mitigated. The residual		
impact would however be low.				

Table 6-2Displacement of avifauna community (including SCC) due to disturbance from
increased human presence and noise pollution

Impact Nature: Displacement of avifa	una community (including SCC) due	to noise pollution	
Noise pollution generated from prospec vocal communication and concomitantly Larger species tend to also be wary of h	ting activities will lead to the displaced y to reproductive success. Many spec numans and therefore will emigrate to a	ment of avifauna. Noise pollution leads to changes in ies may consequently avoid these areas completely. reas away from increased human presence.	
	Without mitigation	With mitigation	
Extent	Low (2)	Very Low (1)	
Duration	Very short duration (1)	Very short duration (1)	
Magnitude	High (8)	Low and will cause a slight impact on processes (4)	
Probability	Highly probable (4)	Probable (3)	
Significance	Medium (44)	Low (18)	
Status (positive or negative)	Negative	Negative	
Reversibility	Moderate	High	
Irreplaceable loss of resources?	No	No	
Can impacts be mitigated?	Yes, albeit only to a certain level. Impacts are difficult to mitigate against.		
Mitigation:			

- Minimise the prospecting time at a site.
- No prospecting from Sunrise until 09:00 and 16:00 and Sunset to minimise noise disturbance during their peak activity times. Allowing for vocalisation.
- No prospecting during nights.
- Minimal staff should be considered at the prospecting site to minimise additional noise disturbance.
- Noise must be kept to a minimum and when possible.
- Baffle boxes or noise-reduction equipment should be used if possible.
- Implement an avifauna monitoring program during the prospecting. This is of utmost importance to implement this due to the very high sensitivity of the PAOI and will provide valuable information for any future prospecting activities in the areas. However, this should be conducted by an avifauna specialist

Residual Impacts:

Due to the sensitivity and furtive behaviour of the SCC within the region, residual impacts are expected to remain with this impact.

Table 6-3Direct mortality from vegetation clearing, increased vehicle traffic and poaching,
including the collection of eggs

Impact Nature: Direct mortality from vegetation clearing, increased vehicle traffic and poaching, including the collection of eggs

Direct mortality may arise when the area is cleared, especially for species whose predator response is to remain still and camouflaged against the substrate, as well as those species that are ground-nesting. Increased vehicle traffic will result in an increased likelihood of roadkill.

	Without mitigation	With mitigation
Extent	Low (2)	Very Low (1)
Duration	Very short duration (1)	Very short duration (1)
Magnitude	High (8)	Minor (2)

Prospecting Right Application

Probability	Highly probable (4)	Improbable (2)
Significance	Medium (44)	Low (8)
Status (positive or negative)	Negative	Negative
Reversibility	Low	High
Irreplaceable loss of resources?	No	No
Can impacts be mitigated?	Yes	

Mitigation:

- Any avifauna threatened by the activities should be removed safely by an appropriately qualified environmental officer or removal specialist.
- All construction vehicles should adhere to a speed limit of maximum 20 km/h to avoid collisions. Appropriate speed control
 measures and signs must be erected.
- Poaching must be made a punishable offence and any incidences must be reported to the relevant conservation body.
- All personnel and contractors to undergo Environmental Awareness Training. A signed register of attendance must be kept for proof of attendance.

Residual Impacts:

It is probable that some individuals of susceptible species will be lost to construction-related activities despite mitigation. However, this is not likely to impact the viability of the local population of any avifauna species.

7 Avifauna Impact Management Actions

The purpose of the Biodiversity Impact Management Actions of is to present the mitigations in such a way that they can be incorporated into the Environmental Management Programme (EMPr), allowing for more successful implementation and auditing of the mitigations and monitoring guidelines.

Table 7-1 presents the recommended mitigation measures and the respective timeframes, targets, and performance indicators pertaining to the avifaunal component.

Table 7-1	Summary of management ou	utcomes pertaining to impacts to	o avifauna and their habitats
-----------	--------------------------	----------------------------------	-------------------------------

line of Management Astions	Implementation		Monitoring	
Impact Management Actions	Phase	Responsible Party	Aspect	Frequency
Management outcome: Habitats				
The areas to be developed must be specifically demarcated to prevent movement into surrounding environments.	Life of operation	Project Manager Environmental Officer	Development footprint	Ongoing
Seashore areas must be declared No-go areas, they must be demarcated to ensure no vehicles or people move into these areas.	Life of operation	Project Manager Environmental Officer	Development footprint	Ongoing
Areas of indigenous vegetation, even secondary communities outside of the direct project footprint, should under no circumstances be fragmented or disturbed further.	Life of operation	Project Manager Environmental Officer	Areas of indigenous vegetation	Ongoing
Areas that are denuded during prospecting need to be re- vegetated with indigenous vegetation to prevent erosion. This will also reduce the likelihood of encroachment by alien invasive plant species. Topsoil must also be utilised, and any disturbed area must be re-vegetated with plant and grass species which are indigenous to this vegetation type.	Rehabilitation	Project Manager	Areas that are denuded during prospecting need to be re-vegetated with indigenous vegetation to prevent erosion. This will also reduce the likelihood of encroachment by alien invasive plant species. Topsoil must also be utilised, and any disturbed area must be re-vegetated with plant and grass species which are indigenous to this vegetation type.	Decommissioning /Rehabilitation
Leaking equipment and vehicles must be repaired immediately or be removed from project area to facilitate repair.	Life of operation	Environmental Officer Contractor	Leaks and spills	Ongoing
Management outcome: Avifauna				
Impact Management Astions	Implementat	lion	Monitoring	
impact management Actions	Phase	Responsible Party	Aspect	Frequency
All personnel should undergo environmental induction with regards to avifauna and in particular awareness about not	Life of operation	Environmental Officer	Evidence of trapping etc	Ongoing

luncat Management Actions	Implementation		Monitoring	
Impact Management Actions	Phase	Responsible Party	Aspect	Frequency
harming, collecting, or hunting terrestrial species, and owls, which are often persecuted out of superstition. Signs must be put up to enforce this.				
The duration of the prospecting should be kept to a minimum to avoid disturbing avifauna, but also outside prime activity hours of avifauna.	Life of Operation	Project Manager Environmental Officer	Construction/Closure Phase	Ongoing
All construction and maintenance motor vehicle operators should undergo an environmental induction that includes instruction on the need to comply with speed limit (20 km/h), to respect all forms of wildlife. Speed limits must still be enforced to ensure that road killings and erosion is limited.	Life of Operation	Health and Safety Officer	Compliance to the training.	Ongoing
All project activities must be undertaken with appropriate noise mitigation measures to avoid disturbance to avifauna population in the region.	Life of Operation	Project Manager Environmental Officer	Noise	Ongoing
All areas to be developed must be walked through prior to any activity to ensure no nests or avifauna species are found in the area. Should any Species of Conservation Concern be found and not move out of the area, or their nest be found in the area a suitably qualified specialist must be consulted to advise on the correct actions to be taken.	Life of Operation	Environmental Officer	Presence of avifauna species and nests	Ongoing
Implement an avifauna monitoring program during the prospecting. This is of utmost importance to implement this due to the very high sensitivity of the PAOI and will provide valuable information for any future prospecting activities in the areas. However, this should be conducted by an avifauna specialist	Life of Operation	Project Manager Environmental Officer Avifauna specialist	Understand the impact of the noise on avifauna prior, during and post prospecting	Ongoing

8 Conclusion and Impact Statement

8.1 Conclusion

This Avifauna Assessment aimed to provide information to guide the risk of the proposed prospecting to the avifauna community.

Only one site visit was conducted. The field investigation was conducted over 6 days from the 13th to the 18th of May, 2023. The total number of individual species accounts for approximately 34.3% of the total number of expected species Eight SCC was recorded within the PAOI during the survey period *Phalacrocorax capensis* (Cape Cormorant), *Phoenicopterus roseus* (Greater Flamingo), *Sagittarius serpentarius* (Secretarybird), *Afrotis afra* (Southern Black Korhaan), *Neotis ludwigii* (Ludwig's Bustard), *Ardeotis kori* (Kori Bustard), *Geocolaptes olivaceus* (Ground Woodpecker), *Polemaetus bellicosus* (Martial Eagle) and they were recorded 46 times during the surveying period.

The SEI of the proposed PAOI was found to be Very High. However, the overall residual impacts expected for the prospecting activities is low. Management measures include ensuring the prospecting footprints are minimised and restored after prospecting.

8.2 Impact Statement

The main expected impacts of the proposed prospecting activities will include the following:

- Habitat loss and fragmentation; and
- Noise disturbance.

Mitigation measures, as described in this report, can be implemented to reduce the significance of the risk to an acceptable residual risk level. Considering the above-mentioned information, the specialist believes the project may be favourably considered on condition that all the mitigation and recommendations provided in this report and other specialist reports are implemented.

9 References

BirdLife International (2023) IUCN Red List for birds. Downloaded from <u>http://www.birdlife.org</u> on 06/04/2023.

Birdlife South Africa (2022). Important Bird and Biodiversity Areas. <u>https://www.birdlife.org.za/what-we-do/important-bird-and-biodiversity-areas/</u>

BirdLife South Africa. 2015. Fences & birds, minimising unintended impacts. https://www.birdlife.org.za/what-we-do/landscape-conservation/what-we-do/birds-and-fences/

BirdLife South Africa. 2017. Birds and Solar Energy Best Practice Guidelines. https://www.birdlife.org.za/wp-content/uploads/2020/03/BLSA-Guidelines-Solar-and-Energy.pdf

Buckland, S., Anderson, D., Burnham, K.P. and Laake, J. 1993. Distance Sampling: Estimating Abundance of Biological Populations. 440 pgs., Chapman and Hall, London

Coordinated Avifaunal Roadcounts (CAR) (2020). http://car.birdmap.africa/index.php

Cumming, G.S. & Henry, D.A.W. 2019. Point counts outperform line transects when sampling birds along routes in South African protected areas. African Zoology, 54(4): 187-198. doi: 10.1080/15627020.2019.1658540.

Department of Forestry, Fisheries and the Environment (DFFE). 2022. SACAD (South Africa Conservation Areas Database) and SAPAD (South Africa Protected Areas Database). http://egis.environment.gov.za.

Department of Forestry, Fisheries and the Environment (DFFE). 2021. National Protected Areas Expansion Strategy. <u>http://egis.environment.gov.za.</u>

Driver, A., Holness, S. & Daniels, F (Eds). 2017. Technical guidelines for CBA Maps: Guidelines for developing a map of Critical Biodiversity Areas & Ecological Support Areas using systematic biodiversity planning. South African National Biodiversity Institute (SANBI). 1st Edition. South African National Biodiversity Institute, Pretoria.

Eskom and EWT (no date). Birds and Powerlines Poster. Eskom and EWT Strategic partnership. Wildlife Interaction Series No. 1.

González-Salazar, C., Martínez-Meyer, E., López-Santiago, G. (2014). A hierarchical classification of trophic guilds for North American birds and Mammals. Revista Mexicana de Biodiversidad 85: 931-941, 2014 DOI: 10.7550/rmb.38023

Hockey, P.A.R., Dean, W.R.J. & Ryan, P.G. (Eds). (2005). Roberts – Birds of Southern Africa, VIIth ed. The Trustees of the John Voelcker Bird Book Fund, Cape Town.

Horvath, G., Blaho, M., Egri A., Kriska, G., Seres, I. & Robertson, B. (2010). Reducing the Maladaptive Attractiveness of Solar Panels to Polarotactic Insects Conservation biology 24 (6) 1644-1653

IUCN. (2021). The IUCN Red List of Threatened Species. www.iucnredlist.org

Jenkins, A.R., van Rooyen, C.S., Smallie, J.J., Harrison., J.A., Diamond., M., Smit-Robinson., H.A. & Ralston., S. 2015. Birds and Wind-Energy Best-Practice Guidelines. Birds and Wind-Energy Best-Practice Guidelines.

Lovich, J.E. & Ennen, J.R. 2011. Wildlife conservation and solar energy development in the desert southwest, United States. BioScience 61:982-992.

Nel JL, Murray KM, Maherry AM, Petersen CP, Roux DJ, Driver A, Hill L, Van Deventer H, Funke N, Swartz ER, Smith-Adao LB, Mbona N, Downsborough L and Nienaber S. 2011. Technical Report for the National Freshwater Ecosystem Priority Areas project. WRC Report No. K5/1801.

Prinsen, H.A.M., Smallie, J.J., Boere, G.C. & Píres, N. (Compilers). 2012. Guidelines on How to Avoid or Mitigate Impact of Electricity Power Grids on Migratory Birds in the African-Eurasian Region. AEWA Conservation Guidelines No. 14, CMS Technical Series No. 29, AEWA Technical Series No. 50, CMS Raptors MOU Technical Series No. 3, Bonn, Germany.

Ralston Paton, S., Smallie J., Pearson A., & Ramalho, R. 2017. Wind energy's impacts on birds in South Africa: A preliminary review of the results of operational monitoring at the first wind farms of the Renewable Energy Independent Power Producer Procurement Programme in South Africa. BirdLife South Africa Occasional Report Series No. 2. BirdLife South Africa, Johannesburg, South Africa

Sinclair I., and Ryan, P. (2010). Birds of South Africa South of the Sahara. Penguin Random House South Africa.

Sinha, P., Hoffman, B., Sakers, J. & Althouse, L. 2018. Best practices in responsible land use for improving biodiversity at a utility-scale solar facility. Case Studies in the Environment 2(1): 1–12. https://doi.org/10.1525/cse.2018.001123

Shaw, J.M., Reid, T.A., Gibbons, B.K., Pretorius, M., Jenkins, A.R., Visagie, R., Michael, M.D. & Ryan, P.G. (2021). A large-scale experiment demonstrates that line marking reduces power line collision mortality for large terrestrial birds, but not bustards, in the Karoo, South Africa. Ornithological Applications, 123: 1-10.

Skowno, A.L., Raimondo, D.C., Poole, C.J., Fizzotti, B. & Slingsby, J.A. (eds.). (2019). South African National Biodiversity Assessment 2018 Technical Report Volume 1: Terrestrial Realm. South African National Biodiversity Institute, Pretoria.

Taylor, M.R., Peacock, F. & Wanless, R.M. (Eds). 2015. The (2015) Eskom Red Data Book of birds of South Africa, Lesotho and Swaziland. BirdLife South Africa, Johannesburg.

Van Deventer, H., Smith-Adao, L., Mbona, N., Petersen, C., Skowno, A., Collins, N.B., Grenfell, M., Job, N., Lötter, M., Ollis, D., Scherman, P., Sieben, E. & Snaddon, K. 2018. South African National Biodiversity Assessment (2018): Technical Report. Volume 2a: South African Inventory of Inland Aquatic Ecosystems (SAIIAE). Version 3, final released on 3 October 2019. Council for Scientific and Industrial Research (CSIR) and South African National Biodiversity Institute (SANBI): Pretoria, South Africa.

Visser, Elke & Perold, V. & Ralston-Paton, S. & Cardenal, A. C. & Ryan, P.G., (2019). Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa. Renewable Energy, Elsevier, vol. 133(C), pages 1285-1294.

10 Appendix Items

10.1 Appendix A: Expected species

Scientific Name	Common Name	Familie Name	Regional	Global (IUCN)
Telophorus zeylonus	Bokmakierie	Malaconotidae	Unlisted	Unlisted
Nilaus afer	Brubru	Malaconotidae	Unlisted	Unlisted
Cisticola fulvicapilla	Neddicky	Cisticolidae	Unlisted	Unlisted
Ortygospiza atricollis	Quailfinch	Estrildidae	Unlisted	Unlisted
Sagittarius serpentarius	Secretarybird	Sagittariidae	VU	EN
Tricholaema leucomelas	Acacia Pied Barbet	Lybiidae	Unlisted	Unlisted
Lybius torquatus	Black-collared Barbet	Lybiidae	Unlisted	Unlisted
Trachyphonus vaillantii	Crested Barbet	Lybiidae	Unlisted	Unlisted
Batis molitor	Chinspot Batis	Platysteiridae	Unlisted	Unlisted
Batis pririt	Pririt Batis	Platysteiridae	Unlisted	Unlisted
Merops apiaster	European Bee-eater	Meropidae	Unlisted	Unlisted
Merops hirundineus	Swallow-tailed Bee-eater	Meropidae	Unlisted	Unlisted
Euplectes orix	Southern Red Bishop	Ploceidae	Unlisted	Unlisted
Euplectes afer	Yellow-crowned Bishop	Ploceidae	Unlisted	Unlisted
Pycnonotus nigricans	African Red-eyed Bulbul	Pycnonotidae	Unlisted	Unlisted
Pycnonotus tricolor	Dark-capped Bulbul	Pycnonotidae	Unlisted	Unlisted
Emberiza tahapisi	Cinnamon-breasted Bunting	Emberizidae	Unlisted	Unlisted
Buteo buteo	Common Buzzard	Accipitridae	Unlisted	Unlisted
Crithagra atrogularis	Black-throated Canary	Fringillidae	Unlisted	Unlisted
Crithagra flaviventris	Yellow Canary	Fringillidae	Unlisted	Unlisted
Myrmecocichla formicivora	Ant-eating Chat	Muscicapidae	Unlisted	Unlisted
Oenanthe familiaris	Familiar Chat	Muscicapidae	Unlisted	Unlisted
Cisticola textrix	Cloud Cisticola	Cisticolidae	Unlisted	Unlisted
Cisticola aridulus	Desert Cisticola	Cisticolidae	Unlisted	Unlisted
Cisticola tinniens	Levaillant's Cisticola	Cisticolidae	Unlisted	Unlisted
Cisticola chiniana	Rattling Cisticola	Cisticolidae	Unlisted	Unlisted
Cisticola juncidis	Zitting Cisticola	Cisticolidae	Unlisted	Unlisted
Fulica cristata	Red-knobbed Coot	Rallidae	Unlisted	Unlisted
Corvus capensis	Cape Crow	Corvidae	Unlisted	Unlisted

Corvus albus	Pied Crow	Corvidae	Unlisted	Unlisted
Chrysococcyx caprius	Diederik Cuckoo	Cuculidae	Unlisted	Unlisted
Clamator jacobinus	Jacobin Cuckoo	Cuculidae	Unlisted	Unlisted
Streptopelia capicola	Ring-necked Dove	Columbidae	Unlisted	Unlisted
Spilopelia senegalensis	Laughing Dove	Columbidae	Unlisted	Unlisted
Oena capensis	Namaqua Dove	Columbidae	Unlisted	Unlisted
Streptopelia semitorquata	Red-eyed Dove	Columbidae	Unlisted	Unlisted
Columba livia	Rock Dove	Columbidae	Unlisted	Unlisted
Ardea intermedia	Yellow-billed Egret	Cisticolidae	Unlisted	Unlisted
Bubulcus ibis	Western Cattle Egret	Ardeidae	Unlisted	Unlisted
Falco amurensis	Amur Falcon	Falconidae	Unlisted	Unlisted
Amadina erythrocephala	Red-headed Finch	Estriididae	Unlisted	Unlisted
Lagonosticta rhodopareia	Jameson's Firefinch	Estriididae	Unlisted	Unlisted
Lanius collaris	Southern Fiscal	Laniidae	Unlisted	Unlisted
Melaenornis silens	Fiscal Flycatcher	Muscicapidae	Unlisted	Unlisted
Muscicapa striata	Spotted Flycatcher	Muscicapidae	Unlisted	Unlisted
Scleroptila gutturalis	Orange River Francolin	Phasianidae	Unlisted	Unlisted
Alopochen aegyptiaca	Egyptian Goose	Anatidae	Unlisted	Unlisted
Plectropterus gambensis	Spur-winged Goose	Anatidae	Unlisted	Unlisted
Melierax canorus	Pale Chanting Goshawk	Accipitridae	Unlisted	Unlisted
Tachybaptus ruficollis	Little Grebe	Podicipedidae	Unlisted	Unlisted
Numida meleagris	Helmeted Guineafowl	Numididae	Unlisted	Unlisted
Ardea melanocephala	Black-headed Heron	Ardeidae	Unlisted	Unlisted
Ardea cinerea	Grey Heron	Ardeidae	Unlisted	Unlisted
Upupa africana	African Hoopoe	Upupidae	Unlisted	Unlisted
Plegadis falcinellus	Glossy Ibis	Threskiornithidae	Unlisted	Unlisted
Bostrychia hagedash	Hadada Ibis	Threskiornithidae	Unlisted	Unlisted
Falco rupicoloides	Greater Kestrel	Falconidae	Unlisted	Unlisted
Falco naumanni	Lesser Kestrel	Falconidae	Unlisted	Unlisted
Falco rupicolus	Rock Kestrel	Falconidae	Unlisted	Unlisted
Elanus caeruleus	Black-winged Kite	Accipitridae	Unlisted	Unlisted
Afrotis afraoides	Northern Black Korhaan	Otididae	Unlisted	Unlisted

Vanellus armatus	Blacksmith Lapwing	Charadriidae	Unlisted	Unlisted
Vanellus coronatus	Crowned Lapwing	Charadriidae	Unlisted	Unlisted
Mirafra fasciolata	Eastern Clapper Lark	Alaudidae	Unlisted	Unlisted
Certhilauda semitorquata	Eastern Long-billed Lark	Alaudidae	Unlisted	Unlisted
Calandrella cinerea	Red-capped Lark	Alaudidae	Unlisted	Unlisted
Mirafra africana	Rufous-naped Lark	Alaudidae	Unlisted	Unlisted
Calendulauda sabota	Sabota Lark	Alaudidae	Unlisted	Unlisted
Chersomanes albofasciata	Spike-heeled Lark	Alaudidae	Unlisted	Unlisted
Macronyx capensis	Cape Longclaw	Motacillidae	Unlisted	Unlisted
Riparia cincta	Banded Martin	Hirundinidae	Unlisted	Unlisted
Delichon urbicum	Common House Martin	Hirundinidae	Unlisted	Unlisted
Urocolius indicus	Red-faced Mousebird	Coliidae	Unlisted	Unlisted
Colius striatus	Speckled Mousebird	Coliidae	Unlisted	Unlisted
Colius colius	White-backed Mousebird	Coliidae	Unlisted	Unlisted
Acridotheres tristis	Common Myna	Sturnidae	Unlisted	Unlisted
Struthio camelus	Common Ostrich	Struthionidae	Unlisted	Unlisted
Columba guinea	Speckled Pigeon	Columbidae	Unlisted	Unlisted
Anthus cinnamomeus	African Pipit	Motacillidae	Unlisted	Unlisted
Anthus vaalensis	Buffy Pipit	Motacillidae	Unlisted	Unlisted
Anthus nicholsoni	Nicholson's Pipit	Motacillidae	Unlisted	Unlisted
Charadrius tricollaris	Three-banded Plover	Charadriidae	Unlisted	Unlisted
Netta erythrophthalma	Southern Pochard	Anatidae	Unlisted	Unlisted
Prinia flavicans	Black-chested Prinia	Cisticolidae	Unlisted	Unlisted
Pytilia melba	Green-winged Pytilia	Estrildidae	Unlisted	Unlisted
Coturnix coturnix	Common Quail	Phasianidae	Unlisted	Unlisted
Quelea quelea	Red-billed Quelea	Ploceidae	Unlisted	Unlisted
Cossypha caffra	Cape Robin-Chat	Muscicapidae	Unlisted	Unlisted
Pterocles namaqua	Namaqua Sandgrouse	Pteroclidae	Unlisted	Unlisted
Rhinopomastus cyanomelas	Common Scimitarbill	Phoeniculidae	Unlisted	Unlisted
Cercotrichas paena	Kalahari Scrub Robin	Muscicapidae	Unlisted	Unlisted
Laniarius atrococcineus	Crimson-breasted Shrike	Malaconotidae	Unlisted	Unlisted
Lanius minor	Lesser Grey Shrike	Laniidae	Unlisted	Unlisted

Lanius collurio	Red-backed Shrike	Laniidae	Unlisted	Unlisted
Gallinago nigripennis	African Snipe	Scolopacidae	Unlisted	Unlisted
Passer melanurus	Cape Sparrow	Passeridae	Unlisted	Unlisted
Passer domesticus	House Sparrow	Passeridae	Unlisted	Unlisted
Passer diffusus	Southern Grey-headed Sparrow	Passeridae	Unlisted	Unlisted
Eremopterix leucotis	Chestnut-backed Sparrow-Lark	Alaudidae	Unlisted	Unlisted
Eremopterix verticalis	Grey-backed Sparrow-Lark	Alaudidae	Unlisted	Unlisted
Plocepasser mahali	White-browed Sparrow-Weaver	Ploceidae	Unlisted	Unlisted
Accipiter melanoleucus	Black Sparrowhawk	Accipitridae	Unlisted	Unlisted
Pternistis swainsonii	Swainson's Spurfowl	Phasianidae	Unlisted	Unlisted
Lamprotornis nitens	Cape Starling	Sturnidae	Unlisted	Unlisted
Lamprotornis bicolor	Pied Starling	Sturnidae	Unlisted	Unlisted
Creatophora cinerea	Wattled Starling	Sturnidae	Unlisted	Unlisted
Himantopus himantopus	Black-winged Stilt	Recurvirostridae	Unlisted	Unlisted
Saxicola torquatus	African Stonechat	Muscicapidae	Unlisted	Unlisted
Hirundo rustica	Barn Swallow	Hirundinidae	Unlisted	Unlisted
Cecropis cucullata	Greater Striped Swallow	Hirundinidae	Unlisted	Unlisted
Cecropis semirufa	Red-breasted Swallow	Hirundinidae	Unlisted	Unlisted
Petrochelidon spilodera	South African Cliff Swallow	Hirundinidae	Unlisted	Unlisted
Hirundo albigularis	White-throated Swallow	Hirundinidae	Unlisted	Unlisted
Apus affinis	Little Swift	Apodidae	Unlisted	Unlisted
Apus caffer	White-rumped Swift	Apodidae	Unlisted	Unlisted
Tchagra australis	Brown-crowned Tchagra	Malaconotidae	Unlisted	Unlisted
Turdus litsitsirupa	Groundscraper Thrush	Turdidae	Unlisted	Unlisted
Turdus smithi	Karoo Thrush	Turdidae	Unlisted	Unlisted
Motacilla capensis	Cape Wagtail	Motacillidae	Unlisted	Unlisted
Curruca subcoerulea	Chestnut-vented Warbler	Sylviidae	Unlisted	Unlisted
Phylloscopus trochilus	Willow Warbler	Phylloscopidae	Unlisted	Unlisted
Brunhilda erythronotos	Black-faced Waxbill	Estrildidae	Unlisted	Unlisted
Uraeginthus angolensis	Blue Waxbill	Estrildidae	Unlisted	Unlisted
Estrilda astrild	Common Waxbill	Estrildidae	Unlisted	Unlisted
Granatina granatina	Violet-eared Waxbill	Estrildidae	Unlisted	Unlisted

Prospecting Right Application

Bubalornis niger	Red-billed Buffalo Weaver	Ploceidae	Unlisted	Unlisted
Sporopipes squamifrons	Scaly-feathered Weaver	Ploceidae	Unlisted	Unlisted
Ploceus velatus	Southern Masked Weaver	Ploceidae	Unlisted	Unlisted
Oenanthe pileata	Capped Wheatear	Muscicapidae	Unlisted	Unlisted
Zosterops virens	Cape White-eye	Zosteropidae	Unlisted	Unlisted
Zosterops pallidus	Orange River White-eye	Zosteropidae	Unlisted	Unlisted
Vidua paradisaea	Long-tailed Paradise Whydah	Viduidae	Unlisted	Unlisted
Vidua macroura	Pin-tailed Whydah	Viduidae	Unlisted	Unlisted
Euplectes progne	Long-tailed Widowbird	Ploceidae	Unlisted	Unlisted
Euplectes ardens	Red-collared Widowbird	Ploceidae	Unlisted	Unlisted
Euplectes albonotatus	White-winged Widowbird	Ploceidae	Unlisted	Unlisted
Phoeniculus purpureus	Green Wood Hoopoe	Phoeniculidae	Unlisted	Unlisted
Dendropicos fuscescens	Cardinal Woodpecker	Picidae	Unlisted	Unlisted

*(Taylor et al. 2015), + (IUCN 2021)

10.2 Appendix B

Point count data

10.2.1 Common Name	10.2.2 Scie	entific Name	10.2.3 Fam	ily Name	10.2.4 R (I G
10.2.5 African Pipit	10.2.6 Ant	hus cinnamomeus	10.2.7 Mot	acillidae	10.2.8 0
10.2.9 African Stonechat	10.2.10 Sax	icola torquatus	10.2.11 Mus	cicapidae	10.2.12 0
10.2.13 Ant-eating Chat	10.2.14 Myr forn	mecocichla nicivora	10.2.15 Mus	cicapidae	10.2.16 0
10.2.17 Black-winged Kite	10.2.18 Elar	nus caeruleus	10.2.19 Acc	ipitridae	10.2.20 0
10.2.21 Blacksmith Lapwing	10.2.22 Van	ellus armatus	10.2.23 Cha	radriidae	10.2.24 0
10.2.25 Brown-throated Martin	10.2.26 Ripa	aria paludicola	10.2.27 Hiru	ndinidae	10.2.28 0
10.2.29 Cape Longclaw	10.2.30 Mac	ronyx capensis	10.2.31 Mota	acillidae	10.2.32 0
10.2.33 Cape Sparrow	10.2.34 Pas	ser melanurus	10.2.35 Pase	seridae	10.2.36 0
10.2.37 Capped Wheatear	10.2.38 Oen	anthe pileata	10.2.39 Mus	cicapidae	10.2.40 0
10.2.41 Cloud Cisticola	10.2.42 Cist	ticola textrix	10.2.43 Cist	icolidae	10.2.44 0
10.2.45 Common Quail	10.2.46 Cot	urnix coturnix	10.2.47 Pha	sianidae	10.2.48 0
10.2.49 Crowned Lapwing	10.2.50 Van	ellus coronatus	10.2.51 Cha	radriidae	10.2.52 0
10.2.53 Desert Cisticola	10.2.54 Cist	ticola aridulus	10.2.55 Cist	icolidae	10.2.56 0
10.2.57 Egyptian Goose	10.2.58 Alo	pochen aegyptiaca	10.2.59 Ana	tidae	10.2.60 0
10.2.61 Greater Kestrel	10.2.62 Falc	o rupicoloides	10.2.63 Falc	onidae	10.2.64 0
10.2.65 Grey Heron	10.2.66 Ard	ea cinerea	10.2.67 Arde	eidae	10.2.68 0
10.2.69 Grey-backed Sparrow-Lark	10.2.70 Erei	mopterix verticalis	10.2.71 Alau	ıdidae	10.2.72 0
10.2.73 Helmeted Guineafowl	10.2.74 Nun	nida meleagris	10.2.75 Num	nididae	10.2.76 0
10.2.77 Namaqua Dove	10.2.78 Oen	a capensis	10.2.79 Columbidae		10.2.80 0
10.2.81 Pied Crow	10.2.82 Cor	vus albus	10.2.83 Corvidae		10.2.84 0
10.2.85 Ring-necked Dove	10.2.86 Stre	eptopelia capicola	10.2.87 Columbidae		10.2.88 0
10.2.89 South African Shelduck	10.2.90 Tad	orna cana	10.2.91 Anatidae		10.2.92 0
10.2.93 Southern Fiscal	10.2.94 Lan	ius collaris	10.2.95 Lani	iidae	10.2.96 0
10.2.97 Southern Masked Weaver	10.2.98 Ploo	ceus velatus	10.2.99 Ploc	eidae	10.2.100
10.2.101 Southern Red Bishop	10.2.102	Euplectes orix	10.2.103	Ploceidae	10.2.104
10.2.105 Speckled Pigeon	10.2.106	Columba guinea	10.2.107	Columbidae	10.2.108
10.2.109 Spotted Eagle-Owl	10.2.110	Bubo africanus	10.2.111	Strigidae	10.2.112
10.2.113 Spotted	10.2.114	Burhinus	10.2.115	Burhinidae	10.2.116
10.2.117 Zitting	10.2.118	Cisticola juncidis	10.2.119	Cisticolidae	10.2.120
10.2.121 Northern Black Korbaan	10.2.122	Afrotis afraoides	10.2.123	Otididae	10.2.124
10.2.125 White- browed Sparrow- Weaver	10.2.126 mał	Plocepasser nali	10.2.127	Ploceidae	10.2.128
10.2.129 Black- chested Prinia	10.2.130	Prinia flavicans	10.2.131	Cisticolidae	10.2.132
10.2.133 Orange River Francolin	10.2.134 gutt	Scleroptila turalis	10.2.135	Phasianidae	10.2.136
h			•		

10.2.137	Brown-	10.2.138	Tchagra australis	10.2.139	Malaconotidae	10.2.140
crown	ed Ichagra					
10.2.141	Scaly- red Weaver	10.2.142	Sporopipes	10.2.143	Ploceidae	10.2.144
		5qua		40.0447		40.0.440
10.2.145 throat	Black- ed Canary	10.2.146 atro	Crithagra	10.2.147	Fringillidae	10.2.148
10 2 140	Bod-billod	10 2 150		10 2 151	Placaidaa	10 2 152
Quelea	a Red-billed	10.2.150	Quelea quelea	10.2.151	FIOCEIDAE	10.2.152
10 2 153	Snike-	10 2 154	Chersomanes	10 2 155		10 2 156
heelec	l Lark	albo	fasciata	10.2.100	Aluunduc	10.2.100
10.2.157	Western	10.2.158	Bubulcus ibis	10.2.159	Ardeidae	10.2.160
Cattle	Egret					
10.2.161	Swainson's	10.2.162	Pternistis	10.2.163	Phasianidae	10.2.164
Spurfe	owl	swai	nsonii			
10.2.165	Pottling	10.2.166	Cisticola chiniana	10 2 167	Cisticalidaa	10 2 169
10.2.105 Cistics		10.2.100	Cisticola cilinaria	10.2.107	CISTICOLIDAE	10.2.100
10.2.169	Plain-	10.2.170	Anthus	10.2.171	Motacillidae	10.2.172
backe	d Pipit	leuc	ophrys			
10.2.173	Sabota Lark	10.2.174	Calendulauda	10.2.175	Alaudidae	10.2.176
		sabo	ota			
40.0.477	Wing	40.0.470		40.0.470	Ciatiaalidaa	40.0.400
10.2.177	wing-	10.2.178	Cisticola ayresii	10.2.179	Cisticolidae	10.2.180
snapp	ing Cisticola					
10.2.181	Buffy Pipit	10.2.182	Anthus vaalensis	10.2.183	Motacillidae	10.2.184
10 2 195	Long tailed	10.2.196	Euplactas progra	10 2 197	Placaidaa	10 2 100
10.2.105	Long-tailed	10.2.100	Euplecies proglie	10.2.107	FIOCEIUae	10.2.100
WIDOW	/bird					
10.2.189	Great Egret	10.2.190	Ardea alba	10.2.191	Ardeidae	10.2.192
10.2.193	Banded	10.2.194	Riparia cincta	10.2.195	Hirundinidae	10.2.196
Martin						
10 2 197	Melodious	10 2 198	Mirafra cheniana	10 2 199	Alaudidae	10 2 200
	meloalous	10.2.150		10.2.155	Aldudiduc	10.2.200
	Dedition	40.0.000	A	40.0.000		40.0.004
10.2.201	Red-neaded	10.2.202	Amadina	10.2.203	Estriididae	10.2.204
Finch		eryth	nrocephala			
10.2.205	African Palm	10.2.206	Cypsiurus parvus	10.2.207	Apodidae	10.2.208
Swift					•	
10.2.209	Red-collared	10 2 210	Funlectes ardens	10 2 211	Ploceidae	10 2 212
\\\:dow	whird	10.2.210		10.2.211		10.2.212
		40.0.011		40.0.045		40.0.040
10.2.213	Qualifinch	10.2.214	Ortygospiza	10.2.215	Estrildidae	10.2.216
		atric	ollis			
10.2.217	Great Reed	10.2.218	Acrocephalus	10.2.219	Acrocephalidae	10.2.220
Warble	er	arun	dinaceus			
10.2.221	Vollow	10 2 222	Crithagra	10 2 222	Fringillidao	10 2 224
IV.Z.ZZI		10.2.222	Gilliayia	10.2.223	Filligilluae	10.2.224
tronte	a canary	moz	ampica			
10.2.225	Pink-billed	10.2.226	Spizocorys	10.2.227	Alaudidae	10.2.228
Lark		coni	rostris			
10.2.229	Great	10.2.230	Passer motitensis	10.2.231	Passeridae	10.2.232
Snarro	w					
40.0.000		40.0.004	Anoo amarca	40.0.005	Anotidae	40.0.000
10.2.233	Arrican	10.2.234	Anas sparsa	10.2.235	Anatidae	10.2.236
Black	DUCK					
10.2.237	Speckled	10.2.238	Colius striatus	10.2.239	Coliidae	10.2.240
Mouse	ebird					

Common Name	Scientific Name	Family Name	RD (Regional, Global)
African Stonechat	Saxicola torquatus	Muscicapidae	0
Ant-eating Chat	Myrmecocichla formicivora	Muscicapidae	0
Bar-throated Apalis	Apalis thoracica	Cisticolidae	0

www.thebiodiversitycompany.com

Black-headed Heron	Ardea melanocephala	Ardeidae	0
Bokmakierie	Telophorus zeylonus	Malaconotidae	0
Cape Bunting	Emberiza capensis	Emberizidae	0
Cape Clapper Lark	Mirafra apiata	Alaudidae	0
Cape Cormorant	Phalacrocorax capensis	Phalacrocoracidae	EN, EN
Cape Long-billed Lark	Certhilauda curvirostris	Alaudidae	0
Cape Penduline Tit	Anthoscopus minutus	Remizidae	0
Cape Robin-Chat	Cossypha caffra	Muscicapidae	0
Cape Sparrow	Passer melanurus	Passeridae	0
Cape Spurfowl	Pternistis capensis	Phasianidae	0
Cape Wagtail	Motacilla capensis	Motacillidae	0
Cape Weaver	Ploceus capensis	Ploceidae	0
Chestnut-vented Warbler	Curruca subcoerulea	Sylviidae	0
Common Quail	Coturnix coturnix	Phasianidae	0
Common Starling	Sturnus vulgaris	Sturnidae	0
Common Tern	Sterna hirundo	Laridae	0
Familiar Chat	Oenanthe familiaris	Muscicapidae	0
Greater Flamingo	Phoenicopterus roseus	Phoenicopteridae	NT, LC
Grey Tit	Melaniparus afer	Paridae	0
Grey-backed Cisticola	Cisticola subruficapilla	Cisticolidae	0
Hadada Ibis	Bostrychia hagedash	Threskiornithidae	0
Hartlaub's Gull	Chroicocephalus hartlaubii	Laridae	0
Karoo Lark	Calendulauda albescens	Alaudidae	0
Karoo Prinia	Prinia maculosa	Cisticolidae	0
Karoo Scrub Robin	Cercotrichas coryphoeus	Muscicapidae	0
Kelp Gull	Larus dominicanus	Laridae	0
Large-billed Lark	Galerida magnirostris	Alaudidae	0
Layard's Warbler	Curruca layardi	Sylviidae	0
Pale Chanting Goshawk	Melierax canorus	Accipitridae	0
Pied Crow	Corvus albus	Corvidae	0
Pied Starling	Lamprotornis bicolor	Sturnidae	0
Ring-necked Dove	Streptopelia capicola	Columbidae	0
Rock Kestrel	Falco rupicolus	Falconidae	0
Rock Martin	Ptyonoprogne fuligula	Hirundinidae	0
Rufous-eared Warbler	Malcorus pectoralis	Cisticolidae	0
Secretarybird	Sagittarius serpentarius	Sagittariidae	VU, EN
Southern Black Korhaan	Afrotis afra	Otididae	VU, VU
Southern Double-collared Sunbird	Cinnyris chalybeus	Nectariniidae	0
Southern Fiscal	Lanius collaris	Laniidae	0
Speckled Pigeon	Columba guinea	Columbidae	0
Spotted Eagle-Owl	Bubo africanus	Strigidae	0
Spotted Thick-knee	Burhinus capensis	Burhinidae	0
White-backed Mousebird	Colius colius	Coliidae	0
White-breasted Cormorant	Phalacrocorax lucidus	Phalacrocoracidae	0

White-throated Canary	Crithagra albogularis	Fringillidae	0
Yellow Canary	Crithagra flaviventris	Fringillidae	0
Yellow-bellied Eremomela	Eremomela icteropygialis	Cisticolidae	0
Spike-heeled Lark	Chersomanes albofasciata	Alaudidae	0
Karoo Chat	Emarginata schlegelii	Muscicapidae	0
White-fronted Plover	Charadrius marginatus	Charadriidae	0
Chat Flycatcher	Melaenornis infuscatus	Muscicapidae	0
Ludwig's Bustard	Neotis ludwigii	Otididae	EN, EN
Kori Bustard	Ardeotis kori	Otididae	NT, NT
Ground Woodpecker	Geocolaptes olivaceus	Picidae	LC, NT
Martial Eagle	Polemaetus bellicosus	Accipitridae	EN, EN
African Oystercatcher	Haematopus moquini	Haematopodidae	0

10.3 Appendix C: Specialist Declaration of Independence

I, Ryno Kemp, declare that:

- I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, regulations, and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the competent authority; and the objectivity of any report, plan, or document to be prepared by myself for submission to the competent authority;
- All the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offence in terms of Regulation 71 and is punishable in terms of Section 24F of the Act.

Ryno Kemp Biodiversity Specialist The Biodiversity Company June 2023

